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Abstract

This article considers a general class of nonpreemptive multi-mode resource-constrained project scheduling problems
in which activity durations depend on committed renewable resources (multi-mode time resource tradeoff). We propose a
genetic algorithm for these problems and compare it with a stochastic scheduling method proposed by Drexl and Gruenewald.
Computational results show that the proposed genetic algorithm is superior to the stochastic scheduling method. © 1997

Elsevier Science B.V.
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1. Introduction

A traditional resource-constrained project schedul-
ing problem is composed of activities subject to tech-
nological precedence constraints (i.e. an activity can
start only if all its predecessor activities have been
completed) and which cannot be interrupted once they
begin (i.e. no preemption is allowed). In this prob-
lem, an activity can be performed in one or more
combinations of duration and resource requirements.
Any activity, once initialized in a specific mode, must
be fixed without changing its mode until it is com-
pleted. Resources are available in a constant amount
per period. The problem described above can be called
a single-mode or multi-mode resource-constrained
project scheduling problem depending on an activ-
ity performed in exactly one or more ways. Inter-
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ested readers should examine both single-mode works
[2,4,6] and multi-mode works [7,10,12,14].

The following example, similar to Talbot [12], il-
lustrates the abovementioned multi-mode problem. In
Fig. 1 and Table 1, the project is shown to consist of
seven activities (including one dummy activity), each
of which is successfully accomplished in one of two
modes. One renewable resource is required by each
activity. The quantity of resource available in each pe-
riod of the project is 10. With simple computing, we
can find that the optimal project makespan is 11, when
activity 4 and activity 5 are processed with mode 2,
and all of others are scheduled with mode 1. The crit-
ical path represented by activity numberis 1 — 5 —
6 — 7. However, if the size of the project becomes
larger or the resource types get more, an efficient ap-
proach is needed.

The ideas involved in Genetic Algorithms (GAs)
were originally developed by Holland [9] and de-
scribed in greater detail by Goldberg [8]. Genetic al-
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[2,5]
junction activity

[1.6]
[forward order, backward order]

Fig. 1. A 7-activity project.

gorithms are search techniques for global optimization
in a complex search space. As the name suggests, they
employ the concepts of natural selection and genet-
ics. Using past information they direct the search such
that the expected performance will be improved. Al-
though genetic algorithms have already been applied
to a wide range of different problem domains, only a
few approaches have tried to apply them to schedul-
ing problems until now and, moreover, most of them
have been restricted to job shop, flowshop scheduling
problems [3,11] or production scheduling problems
[1].

As known, a multi-mode resource-constrained
project scheduling problem (MRCPSP) is one of
the combinatorial problems which can be theoreti-
cally found out the optimal solution through finite
steps. But for a large and complex project, it becomes
computationally-infeasible. As far, a few deterministic
and stochastic scheduling rules have been developed
to find an approximate solution for the MRCPSP, ge-
netic algorithms are not concerned with. This paper
introduces a genetic algorithm for the MRCPSP. The
approach is based on the incorporation of problem-
specific knowledge of the application domain in the
genetic algorithm. In particular, this leads to a new
complex non-standard representational scheme for
chromosomes that comprises all information relevant
to the search task. The introduction of this expanded
representation requires the definition of new domain-
dependent crossover and mutation operators which
take advantage of the additional information repre-
sented in the chromosomes.

Table 1
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The remainder of the paper is organized as follows:
Section 2 describes the problem considered. In Sec-
tion 3 a genetic algorithm for multi-mode resource-
constrained project scheduling problems is introduced.
Section 4 provides a comparison of the genetic algo-
rithm and the stochastic scheduling method proposed
by Drex] and Gruenewald [7].

2. Problem statement and heuristic algorithms
2.1. Problem statement

We consider the problem described as follows:

e A project consists of N activities, activities are
labeled form 1 to N, with activity N being the
unique terminal job without successors.

e Activity i may be performed in any one of the

modes j =1,..., M;. Each job, once initiated in
a specific mode, must be finished without chang-
ing mode.

e Scheduling activity i in mode j takes d;; time
units (duration).

e Activity i cannot start unless all of its predeces-
sors have been completed.

e Activity preemption is not allowable.

o There are K kinds of the renewable resources,
where resource k is available in quantity Qy per
period. Scheduling activity i in mode j uses gij
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resources units per period for resource k.
o The objective is to minimize the project dura-
tion.

2.2. Heuristic algorithms for MRCPSP

In accordance with resource restrictions, the neces-
sary sequence should be decided if any resource con-
flict occurs among the currently schedulable activi-
ties. (Activities are said to be conflicting when their
resource requirements exceed the currently available
resource levels of at least one resource type.) There
are a few rules have been developed. Talbot [12] pro-
posed deterministic scheduling rules, and compared
eight heuristic scheduling rules. The rule MIN LF;
was shown to behave best regarding the average qual-
ity of solutions.

MIN LF;: The eligible job i with minimum lat-
est finish time LF; is scheduled first. The latest finish
times LF; are calculated by taking

N
T::Zmax{d,-j [ji=1,....,M;}
i=1

as an upper bound for project makespan and perform-
ing a traditional backward recursion using shortest du-
rations dmin; := min{d;; | j = 1,..., M;} for all ac-
tivities i.

Drexl and Gruenewald [7] presented a stochastic
scheduling method (a weighted random selection tech-
nique). The stochastic nature of this method emerges
from using some criteria measuring the impacts of job
selection and mode assignment in a probabilistic way.

More precisely, they calculate

a),-j:=(max{a';,k]hEEJ, k=1,...,Mh}
—d,'j+€)a(l'€EJ,j=1,...,M;), (1)

where EJ corresponds to the set of the eligible jobs
and jobmodes j = 1,. .., M; taken appropriately. This
equation estimates the worst-case consequence of as-
signing mode j not to job i with respect to job dura-
tions; € > 0 makes w;; to be positive; & > O trans-
forms the term (.) in an exponential way, thus dimin-
ishing or enforcing the difference between the mode-
dependent job durations for @ < 1 or @ > 1, re-
spectively. In this sense it suggests itself to use w;;
for stochastic job selection and (or) mode assignment

with probabilities proportional to w;; for all i € EJ
and j=1,..., M,
Alternatively, use

¥i ;= (max{LF; | k€ EJ} — LF; + €)%, i € EJ, (2)

for selecting job i* € EJ randomly with probabilities
proportional to ; for all { € EJ in a first stage and
then assign mode j to job i* at random based on w;-;
in a second stage.

For convenience they denoted both stochastic job
selection and mode assignment procedures with STO-
COM (STOchastic COnstruction Method), whereas
STOCOM1 as well as STOCOM?2 specifically denote,
whenever necessary, the one based on (1) as well as
(2) and (1), respectively.

Drexl and Gruenewald [7] compared the perfor-
mance between STOCOM and MIN LF; and con-
cluded that STOCOM is highly superior to other well-
known existing deterministic scheduling rules.

3. Genetic algorithm for MRCPSP

Before a GA can be run, a suitable representation
for the MRCPSP must be devised. We also require a
fitness function, which assigns the project makespan
to each representation. During the run, parents must
be selected for reproduction, and use genetic operators
to generate offspring. Before we describe these as-
pects, one parameter of the representation which rep-
resents activity scheduling order is introduced.

3.1. Scheduling order interval of the activity

A scheduling order of an activity means a priority
of the activity in a schedule. Suppose that an activity
with smaller order number is scheduled before than
anyone with larger order number. Let P; denote the set
of activities immediately preceding activity i, and S; be
the set of activities immediately succeeding activity i.
In accordance with precedence constraints, the activity
scheduling order interval between forward scheduling
order f; and backward scheduling order b; of activity
i can be determined (ref, Tavares [13]) as follows.

For a N-activity project, the forward scheduling or-
der of activity i (i=1,..., N) is defined by

(a) fi=1iff P,=9,
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(b) ﬂ=miff1jréalgl§{fj}=m_1_

Then given any integer [ subjectto fy < I < N,
the backward scheduling order of activity i is defined
by

(a) b;=1iff §; =0,
(b) bi =niff min{b;} =n+1.
JES;

Based on the previous description, scheduling or-
der intervals [ f;, b;] of all activities i of the example
shown in Fig. 1 can be obtained given /=7.

3.2. Direct representation of MRCPSP

In a direct problem representation, the MRCPSP it-
self is used as a chromosome. Thus, no decoding pro-
cedure is necessary. All information relevant to the
MRCPSP at hand is included in the problem represen-
tation. The genetic algorithm is the only method that
carries out search since the represented information
comprises the entire search space. Neither a transfor-
mation procedure nor a schedule builder are necessary
anymore.

A complete schedule for the MRCPSP comprises all
activities with associated mode and scheduling order
assignments and time intervals of activities (start and
finish times). The mode is chosen at random from its
available modes and the scheduling order is assigned
randomly within its scheduling order interval for each
activity. The scheme of the direct representation is
sketched as below. Each cell (i.e., gene) which de-
scribes an activity { contains three elements: the upper
one, AiMa, means that activity i is scheduled in mode
Ma; the middle one, order?, denotes the scheduling
order of activity i; the lower one, [start,finish], repre-
sents the time interval between start and finish time of
activity i. For example, Al1Ma/orderl/ [start,finish]
represents that activity 1 is scheduled with mode « and
is processed before the activities with scheduling or-
der 2, and that [start,finish] means the start and finish
time of activity 1 will be derived later. That is, once
modes and scheduling orders of all activities are given,
the start and finish time of each activity and project
makespan can be obtained if the generated schedule
is feasible.

We represent the MRCPSP as a list of activity-
mode/order/ start-finish-time, as shown in Fig. 2.

AlMa A2MB ANMY
order 1 order2 | order Q
[start, finish}

[start, finish] (start, finish]

Fig. 2. Direct representation of a schedule.

The quality of a chromosome (i.e. schedule) is
measured by means of an fitness (or evaluation) func-
tion, which assigns a numerical value to a schedule.
Several different evaluation criteria can be relevant for
a particular application, e.g. project duration, or max-
imum lateness. In this paper, we evaluate the duration
of the project. The goal of scheduling is to construct a
feasible project schedule, which minimizes the chosen
evaluation function.

Remark: A project schedule is called feasible, if the
precedence relations of the activities are maintained
and the resource constraints are met.

3.3. Initialization

The initial generation of complete and consistent
(i.e., no precedence violation) schedules can be gen-
erated as follows.

For each schedule of initial generation, we first ran-
domly decide the backward scheduling order of ac-
tivity N within the interval between fy and N. Then
the scheduling order intervals of all activities are ob-
tained. For each locus:

o the activity number is placed in ascending order.

e the mode of each activity is assigned randomly
from its available modes.

e the scheduling order of each activity is deter-
mined randomly from its scheduling order inter-
val.

After the mode and scheduling order of each activity
is given, we can calculate the start and finish time of
each activity and project makespan if the generated
schedule is feasible. Generate a new feasible schedule
successively until the first generation is produced. In
this way a random and diverse generation of schedules
can be produced, since even slightly different mode
or scheduling order usually cause the generation of
radically different schedules.
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Parent Schedule 1

AIM2A2M1|A3M2/A4M1|ASM2|A6M1|ATM1
order 1 | order 1 | order 2 | order 3 | order 2 | order 4 | order §

0,5] {10,2] | [2,9] | £9,12]] (5,91 |[12,19]] [19,19]
Parent Schedule 2
AIMI1|A2M2{A3M2/A4M2|ASMI1|A6M2{ATMI
order 1 | order 2 | order 1 | order 2 | order 3 | order 4 | order 5

[0,3] | [3.6] | [0,7] | [3,6] | [6,101] (10, 16]| [16, 16]

1 Crossover

Offspring Schedule
AIMI{A2M2/A3M2[A4M2[ASMI1A6M2[ATM1L
order 1 | order 2 | order 2 | order 2 | order 3 | order 4 | order 5

LA (B e e (6 e (54

Fig. 3. An example of crossover.

3.4. Sorting

Once one generation which consists of a certain
number of feasible schedules is constructed, we sort
the chromosomes in ascending order of project dura-
tion.

3.5. Genetic operators

The introduction of a non-standard chromosome
representation necessitates the definition of new
crossover and mutation operators which are usually
more complicated than traditional ones. The selection
operator need not to be changed since it works only
on fitness values and is therefore independent of any
specific chromosome representation.

Recombination operators have been developed to
operate on the direct representation of the MRCPSP.
They have been designed to take advantage of all in-
formation represented in the chromosome, i.e. to ad-
dress the entire search space. To overcome the prob-
lem of illegal solutions, each operator creates offspring
schedules in a manner that guarantees that precedence
constraint specified in the scheduling problem remains
satisfied.

(1) Crossover

The crossover operator should generate an off-
spring schedule by combining features of two
selected parent schedules. The basic features of
the MRCPSP are temporal mode and scheduling
order assignments of each activity.

The goal is to minimize the project duration.
Thus the junction activity with the smaller start
(or finish) time is a very important criterion.

(2)

Therefore, in order to support the inheritance of
the good features of a schedule, the crossover op-
erator has been designed to maintain the modes
and scheduling orders of the predecessors of the
junction activity. The scheme of the crossover
operator is depicted as follows:

Select two parent schedules: one is the first
schedule with minimum project duration; the
other is chosen randomly from those whose
project durations are not minimum.

(a) Choose one junction activity with lower
start time at random from one parent. The
offspring schedule inherits the correspond-
ing predecessor activities of the junction
activity chosen.

(b) Take missing activities from the other par-
ent; and insert into the offspring schedule

The part taken from the chosen parent sched-
ule in step (a), i.e. the chosen junction activ-
ity and the predecessor activities of it with their
modes and scheduling orders, builds a consis-
tent partial schedule for the offspring. Step (b)
enables the missing activities to be inherited
from the second parent schedule. If this offspring
schedule is inconsistent, we adjust the schedul-
ing orders of the activities inherited from the sec-
ond parent schedule to satisfy precedence con-
straints. For example, suppose we choose two
parent schedules from a 7-activity project exam-
ple described in Section 1 (Fig. 3). Activity 6
is a junction. The start time of the activity 6 of
parent schedule 2 is smaller than parent schedule
1. According to the crossover devised, activities
1,2, 4, 5 and 6 of offspring schedule will inherit
from parent schedule 2. Activities 3 and 7 will
inherit from parent schedule 1.

This approach ensures that the application of

the crossover operator always yields consistent
offspring schedules.
Mutation
The mutation operator must be able to alter all
information represented in the chromosome. It
must also provide the possibility of reintroduc-
ing lost genetic material. Thus we devise two
types, one is to change modes for the selected
activities, the other is to generate a new sched-
ule, as follows:

(a) Select one schedule randomly;
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Parent Schedule
AIM2|A2M1(A3M2|A4MI1ASM2JA6M1ATMI1
order 1 | order 1 | order 2 | order 3 | order 2 | order 4 | order §
0,51 | (0,2} | [2,91 | [9,12){ [5,9] |[12,19]| {19,19)
|} Mutation
Offspring Schedule
AIM2(A2M2/A3M2/A4M2IASMI1|A6MI|ATM1
order 1 | order | | order 2 | order 3 | order 2 | order 4 | order 5
-1 (6 B T B (6 (-

Fig. 4. An example of mutation.

(i) select n (less than N) activities at ran-
dom, and

(ii) change mode for the selected activities.
For instance, suppose we select a parent
schedule from a 7-activity project presented
in Fig. 4 and choose 3 activities such as
activities 2, 4, and 5 randomly. Then their
modes are changed and an offspring sched-
ule is produced.

The mutation operator changes the mode
assignments of the activities selected. The
result of mutation is always a consistent
schedule.

(b) To avoid falling into a local optimum and
accelerate finding a better solution, a new
schedule is produced randomly by the same
method used in initialization.

3.6. New generation

A new generation is produced by the operators de-
scribed as follows:

(1) Duplicate P; offspring schedules from the parent
schedule with minimum makespan (i.e. elitest
preserving strategy).

(2) Produce P, offspring schedules with the
Crossover operator.

(3) Produce P offspring schedules with the muta-
tion operator.

(4) Generate P4 offspring schedules at random.

P, + P, + P3 + Py = P, where P indicates the number
of schedules in the new generation.

4. Computational results

The GA as well as the stochastic scheduling method
have been coded in C and implemented on a SunOS

(UNIX) Release 4.1.3. Similar to [7], the test data
generated for comparative purposes may be character-
ized as follows (project summary measures):

e The problem size, in terms of the number of jobs
N, is the first project summary measure.

e The network complexity C= number of arcs
(precedence relations) / number of nodes (jobs)
affects the performance of scheduling proce-
dures.

o An activity network is generated using A Ran-
dom Activity Network Generator proposed by
Demeulemeester et al. [5] when N and C are
given.

o The number of modes of job i is generated ran-
domly such that 2 < M; < 4.

o The total number of renewable resource types
K =4 is fixed.

o The (integer) duration d;; of job i being sched-
uled in mode j is generated at random such that
5<d; <10

e Job-mode-dependent (integer) resource de-
mands (requirements) are randomly generated
such that 0 < g < 5 for all resources.

¢ The availability Oy of renewable resource type k
is determined by multiplying the peak resource
requirement

Q,;:=max{q,-jk|i=l,...,N, j=1,..., M},
with R1, 1.5 < R1 < 3.3, thus getting
Qv:=0,-Rl, k=1,.. K

Drexl and Gruenewald generated and solved to opti-
mality with different project summary measures. They
found the smallest average percentage deviation of ob-
jective function values with € = 1 and @ = 2.0 among
a=0.0,0.5,1.0,1.5,2.0.

Once test data is generated, we first obtain the min-
imal solution from 100 successful 3 iterations in STO-
COM stage with € = 1 and & = 2. In the GA stage,
we initialize 40 schedules as the first generation. To
compare the minimal solution of each generation in
GA, we stop searching if the solution is smaller than
that produced by STOCOM, else we continue to do at
most 50 generations.

3 By successful, we mean finding a feasible solution.
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Table 2
Comparison of STOCOM and GA
N=20 N=30 N=40 N=50 N=60 N=70
Complexity (C) 35 40 40 40 4.0 40
A 10 63 57 50 78 77
B 6 18 19 21 20 12
C 30 8 2 4 0 0
D 17 4 8 7 0 2
E 37 7 14 18 2 9
Total 100 100 100 100 100 100

A : Number of times in which GA found smaller optimum than STOCOM and GA took equal or less CPU time than STOCOM.
B : Number of times in which GA found smaller optimum than STOCOM and GA took more CPU time than STOCOM.
C : Number of times in which GA found same optimum with STOCOM and GA took equal or less CPU time than STOCOM.
D : Number of times in which GA found same optimum with STOCOM and GA took more CPU time than STOCOM.
E : Number of times in which GA optimum found is greater than STOCOM.
Table 3
CPU-times of STOCOM and GA in seconds
Number of STOCOM GA
activities MIN MEAN MAX MIN MEAN MAX
N=20 0.52 1.03 445 0.61 1.40 6.23
N=30 1.02 1.19 2.39 0.68 0.99 5.95
N=40 213 2.65 3.85 0.77 291 1135
N=50 4.11 451 592 0.98 3.82 15.26
N=60 7.06 734 14.49 121 3.63 15.74
N=70 11.54 1227 15.72 1.97 5.90 32.17

The results of Table 2 are obtained from 100 dif-
ferent project measures (generated randomly) under
one generated activity network (given N and C) by
running GA with P, =20,P, =10,P; =7,P; = 3.

The CPU-times required by the rule of STOCOM
and by GA are given in Table 3. Table 3 presents mini-
mum, mean, maximum CPU-times (test data generat-
ing time excluded) in seconds (MIN, MEAN, MAX)
to obtain minimal solution for STOCOM and GA us-
ing the abovementioned procedure. Table 3 shows that
the mean times of GA are faster than those of STO-
COM for large number of activities (such as N equals
to 50, 60 or 70).
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