Statistical analysis for comparison of overall performance of projects using Weibull analysis on earned value metrics

Ching-Chih Tseng

Department of Business Administration, Dayeh University, Changhua 51591, Taiwan, Republic of China

First published on: 25 November 2010

To cite this Article Tseng, Ching-Chih(2011) 'Statistical analysis for comparison of overall performance of projects using Weibull analysis on earned value metrics', Journal of the Chinese Institute of Industrial Engineers, 28: 3, 165 — 178, First published on: 25 November 2010 (iFirst)

To link to this Article DOI: 10.1080/10170669.2010.532598

URL: http://dx.doi.org/10.1080/10170669.2010.532598

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.
Statistical analysis for comparison of overall performance of projects using Weibull analysis on earned value metrics

Ching-Chih Tseng*

Department of Business Administration, Dayeh University, 168 University Road, Dacun, Changhua 51591, Taiwan, Republic of China

(Received September 2009; revised November 2009; accepted September 2010)

Most organizations have evaluated project performance primarily through cost and schedule performance measures, such as earned value management, for projects. However, to date, few tools in the project management literature have been proposed for enabling comparisons of the overall performance of projects. This study introduces a simple index, the critical ratio in time (CR(t)), as a measure of the overall performance of a project. The index can be easily calculated on the basis of the earned value (EV) data, which are normally available from a project cost system. Based on the index, a statistical analysis for the comparison of the overall performance of projects using Weibull analysis on EV metrics is proposed. The statistical analysis can be performed on a spreadsheet, such as Microsoft Excel. Furthermore, the detailed steps in the analysis are discussed along with an example in which five sample projects are analyzed and compared. Based on the obtained results, the author concludes that the proposed approach on the basis of CR(t) data can provide a robust and effective method for managers to evaluate and compare the overall performance of projects, and can be applicable in evaluating the project whose value has been determined (e.g. contracted projects).

Keywords: earned value metrics; critical ratio in time; project performance; Weibull analysis

1. Introduction

The use of project management has had rapid growth in public sectors and private organizations/firms. In general, multiple projects are often performed simultaneously in many public organizations and construction companies. Each of these projects is usually a one-time endeavor with a set of well-defined objectives. Projects are managed concurrently and may be either related to or independent of one another. At any period in time, projects are either ongoing at various phases, at completion, or being terminated for various reasons. To date, the project management literature has contained few tools to enable an effective evaluation and comparison of the overall performance of projects. Moreover, in multi-project organizations it is necessary to develop a simple but reliable method for effectively comparing the performance of projects at a specific time, to help effectively allocate resources, motivate project managers and their teams, and create an improved environment.

For evaluation and comparison purposes, however, a vast amount of various data must be collected due to the multidimensional nature of project performance. Hence, this report introduces a simple index, called critical-ratio-in-time, as a measure of the overall performance of a project. This index can be easily calculated on the basis of the earned value (EV) data. On the basis of the index, a statistical analysis for the comparison of the overall performance of projects using Weibull analysis based on EV metrics is proposed. This statistical analysis can be performed on a spreadsheet, such as Microsoft Excel, by using the only information normally available from a project cost system, i.e. to-date actual cost (AC), to-date earned budget, and to-date planned cost. These data are typically collected and calculated on a weekly or other periodic basis for each cost account and summed for the total project.

This article is organized as follows. Section 2 provides an overview of earned value management (EVM). In Section 3, a relevant literature review on the evaluation and comparison of the overall performance of projects is given. The overall project performance index proposed is described in Section 4 and the Weibull analysis in Section 5. Section 6 presents an illustrated example for analysis. Finally, Section 7 concludes this article. The notations used in this article are summarized in Table 1.

*Email: cctseng@mail.dyu.edu.tw

ISSN 1017–0669 print/ISSN 2151–7606 online
© 2011 Chinese Institute of Industrial Engineers
DOI: 10.1080/10170669.2010.532398
http://www.informaworld.com
2. Overview of EVM

A basic form of EV analysis can be traced back to industrial engineers on the factory floor in the late 1800s [11]. The use of EVM as a project monitoring and control mechanism began in the 1960s, when it was championed by the US federal government as an integral part of the cost/schedule control systems criteria (C/SCSC) for its agencies and contractors to track project performance [29, p. 112]. EVM has proven to be such a useful tool that it has been approved as an ANSI/EIA 748-A Standard [22] and has been used extensively by the private sector, local governments and the federal government for management of various types of projects – infrastructure, information technology, manufacturing, etc. [2]. Daniel [8] even pointed out that, “if an organization can effectively integrate EVM into their procurement, timekeeping, and executive information systems, then EVM is probably the best single method for measuring and reporting true project performance and estimating time and cost to complete.”

The Project Management Institute (PMI) defines EVM as a management methodology for integrating the project’s scope, schedule, and resources, and for objectively measuring project performance and progress from project initiation through closeout [23]. This is accomplished by calculating a number of measures. First, the budgeted cost for work scheduled (BCWS) within a given time period, also called the planned value (PV), is calculated. Second, the actual cost of work performed (ACWP) during the given time period, also called the AC, and the budgeted cost for work performed (BCWP), also called the EV, are calculated.

There are two well-known performance indices for the evaluation of project performance in the EVM [12]. One is called the cost performance index (CPI), which is a measure of the cost efficiency of the work accomplished to date. The other is called the schedule performance index (SPI), which is a measure of the schedule efficiency to date. The performance indices are determined next to show the percentage of variation, between planned and actual performance. The general expressions for the cumulative cost- and schedule-variance as well as cost- and schedule-performance indexes are

\[
\text{Schedule variance (SV)} = \text{EV} - \text{PV},
\]

\[
\text{Cost variance (CV)} = \text{EV} - \text{AC},
\]

\[
\text{CPI} = \frac{\text{EV}}{\text{AC}},
\]

\[
\text{SPI} = \frac{\text{EV}}{\text{PV}}.
\]

The above-mentioned formulas are used to calculate the performance indices, generally based on cumulative data. If CPI/SPI is less than 1 (equal to 1, larger than 1), the cost/schedule efficiency is lower than (equal to, higher than) planned. Both sets of indicators are computed at specific times, usually monthly. The CPI is the most accepted and used index. It has been tested over time and found to be a reliable measure of project performance.
to be the most accurate, reliable, and stable [12, p. 435]. However, the SPI behaves erratically for projects behind schedule and loses predictive ability over the last third of the project, since it uses monetary terms as an analogue of time, which is not always correct [18]. At the end of a project, the EV = PV = BAC (budget at completion), and hence the SPI is always equal to unity (i.e. 1) [18,27].

Lipke [18] provides a time-based measure, the earned schedule (ES), to overcome the quirky behavior of the SPI index, and calculates an alternative schedule performance measure (referred to as SPI(t)) that are directly expressed in time units. ES is the point in time when the current EV was to be accomplished [26]. This novel method relies on similar principles of the EV method, and can be calculated as follows [28]: Find period n such that \(EV_n = PV_n + EV_{n+1} \).

\[
\text{ES} = n + \frac{(EV - PV_n)}{(PV_{n+1} - PV_n)},
\]

where n represents the number of the time period from the beginning of the project.

That is, ES is the number of completed PV time increments that EV exceeds plus the fraction of the incomplete PV increment. With ES determined, time-based indicators can be formed. The corresponding cumulative SPI is

\[
SV(t) = \text{ES} - \text{AT},
\]

\[
\text{SPI}(t) = \frac{\text{ES}}{\text{AT}},
\]

where AT is used to refer to the elapsed time that has been expended since the start of the project.

Using ES, schedule indicators can be formed which behave appropriately and analogously to the cost indicators [13,18]. The schedule variance, \(SV(t) \), is positive when the ES exceeds AT and, certainly, is negative when it lags. The SPI, \(\text{SPI}(t) \), is greater than 1.0 when ES is larger than AT, and, certainly, is less than 1.0, when ES is less than AT.

Here, sample data of the Re-vamp check-in project (referred as project A), shown in Table 3, from Vandevoorde and Vanhoucke [27], is provided and used to explain the above-mentioned.

The duration of project A, with a BAC of €360,738, is 9 months. The project was delivered 4 months later than expected, but under budget. The graph of the SV along the project duration shows that the SV follows a negative trend until the 9th month, followed by a positive trend and finally ending with a zero variation (Figure 1a). The graph of the \(SV(t) \), on the contrary, shows a negative trend along the complete project duration, and ends with a cumulative variation of 4 months, which is exactly the project’s delay (Figure 1b). A similar effect is revealed in the graph of the schedule performance metrics, shown in Figure 2. During the early and middle stages, both SPI and \(\text{SPI}(t) \) correlate very well. However, toward the late project stage (at the around 75% completion point), the SPI becomes unreliable, showing an improving trend while the project is slipping further away. This further performance decline is clearly shown by the \(\text{SPI}(t) \) indicator.

3. Relevant literature review

In today’s competing business environment, an important issue in a multi-project organization is looking for a method for effectively evaluating and comparing the performance of various projects at a given time period. The method is necessary in that it can help senior management effectively allocate resources, motivate project managers and their teams, and create an improvement environment. A few works on this issue are reviewed as follows.
Rozenes et al. [25] developed an alternative approach, called the multidimensional project control system (MPCS), which provides a control mechanism for monitoring the characteristics of a project (e.g., quality, design, functionality, and operations). A total of 10 dimensions of project performance measures were identified by the PMI [24] for studying benchmarking efforts (e.g., cost, schedule performance, staffing, alignment to strategic business goals, and customer satisfaction). Despite its multidimensional nature, most organizations have traditionally evaluated project performance primarily through cost and schedule performance measures, such as EVM [10].

Vittner et al. [30] investigated the possibility of using the data envelope analysis (DEA) approach for evaluating the performance of projects in a multi-project environment. Each project is viewed as a decision-making unit (DMU) having its own inputs and outputs. The efficiency of a project would then be a weighted sum of its outputs divided by a weighted sum of its inputs. This research team demonstrated that DEA can be successfully applied to the evaluation of a multi-project environment. The approach used in the illustration is an integration of the MPCS and EVM methods, but it is clear that either method could have also been used separately.

Farris et al. [10] also presented a case study to show how DEA was applied to generate objective cross-project comparisons of project duration within an engineering department of the Belgian armed forces. They applied DEA to answer the question, “does the new concurrent engineering design process appear to result in shorter project duration than the old serial engineering design process, given differences in characteristics across projects?” When applying DEA to compare the relative efficiency of projects, the most concern considered is the size of the comparison group. A rule of thumb generally adopted in DEA applications is that the number of DMUs should be at least twice the sum of the number of inputs and outputs. However, in multi-project environments, it is very common that the number of projects (i.e., the DMUs) may be relatively small and hence the DEA rule of thumb may not be achieved. Thus, there is a need for a methodology to reduce the inputs and outputs to meet the rule of thumb. This is a major drawback.

From the above literature review, for evaluation and comparison purposes, a vast amount of various data must be collected due to the multidimensional nature of project performance. In a performance evaluation framework, where senior management wishes to minimize the number of performance measures it employs while ensuring maximal coverage or visibility into the project, having a tool that captures each of the three areas – scope, schedule, and budget – would be ideal [2]. Therefore, this report attempts to propose a simple index as a measure of the overall performance of a project. The index not only can easily be calculated on the basis of the EV data that are normally available from a project cost system, but also meets senior management wishes.

4. Overall project performance index

Although SPI and CPI are useful for project managers to evaluate and monitor the cost and schedule performance of a project, neither of the indices reflect the overall performance of a project. Moreover, it is possible for one of the indexes (e.g., CPI) to be favorable while the other (e.g., SPI) is unfavorable. An ongoing/completed project might be behind/ahead of/on schedule but under/ at/over cost. There are nine possibilities in total. When comparison of the overall performance of projects in an organization is desired, a composite index is necessitated. For example, the overall performance of the following two ongoing projects is compared: project X is behind schedule (assumed SPI = 0.9) but under cost (CPI = 1.2); while project Y is ahead of schedule (SPI = 1.1) but with a cost over-run (CPI = 0.9). By considering the comparison of a single cost/schedule performance of projects X and Y, one may easily conclude that project Y is superior to project X in terms of schedule performance, while Y is inferior to X in terms of cost performance. Based on SPI/CPI, it is very difficult to evaluate and differentiate which has the better overall performance. This leads to why we need a simple and effective index as a measure of the overall performance of a project.

Many works [3,4,7,17,22] have advocated that the critical ratio (CR), or so-called cost-schedule index (CSI), CR = CPI × SPI, is usually used as a measure of overall project performance. A CR of 1.00 indicates that the overall project performance is on target. A CR of more than (or less than) 1.00 indicates that the overall project performance is excellent (or poor). Cable et al. [5] also pointed out that the CPI and SPI are the only individual indexes of each project, whereas the CR, considering both the CPI and SPI, reflects the overall status of the projects.

But in practice, the CR may not be an inappropriate one to measure the overall project performance owing to the SPI index with some anomalies discussed in Section 2. Hence, a revised index, called the CR(t) = CPI × SPI(t), is presented and used to measure the overall project performance in this article. Similar to CR, a CR(t) of 1.00
indicates that the overall project performance is on target. This might result from both CPI and SPI being close to target, or, if one of these indices suggests poor performance, the other must be indicating good performance. This allows some trade-offs to reach the desired project goals. A CR(i) of more than (or less than) 1.00 indicates that the overall project performance is excellent (or poor).

In the following, the author wants to address and present the applicability of Weibull analysis for evaluating CR(i) and to provide managers with an effective tool for stochastically evaluating the CR(i). The reasons for using Weibull analysis are addressed as follows. First, a number of probabilistic distributions such as exponential, logistic, normal, lognormal, and Weibull, are checked against the data using the Anderson–Darling test (using the Easy-Fit data analysis tool) and the Weibull distribution is found to be the best representative for CR(i) (having the lowest AD value). Second, since the Weibull distribution is robust enough to assume a number of different distributions (including the normal, exponential, and beta distributions), one can employ the Weibull distribution to model the CR(i) data of the project, without the limitations of a predefined distribution assumption [21]. Third, Weibull analysis can provide accurate performance analysis and risk predictions with extremely small samples [1]. A small sample can be defined as any sample less than 25.

To utilize Weibull analysis for evaluating and comparing CR(i), the periodic values of CPI, SPI(i), and CR(i) are necessary and can be derived from cumulative values. These values are computed from the differences in their respective cumulative values for successive periods. Thus, the periodic formulas for CPI_per(i), SPI_per(i), and CR_per(i) are as follows:

\[\text{CPI}_{\text{per}(i)} = \frac{(\text{EV}_{\text{cum}}(i) - \text{EV}_{\text{cum}}(i - 1))}{(\text{AC}_{\text{cum}}(i) - \text{AC}_{\text{cum}}(i - 1))}, \]

\[\text{SPI}_{\text{per}(i)} = \frac{(\text{ES}_{\text{cum}}(i) - \text{ES}_{\text{cum}}(i - 1))}{(\text{AT}_{\text{cum}}(i) - \text{AT}_{\text{cum}}(i - 1))}, \]

\[\text{CR}_{\text{per}(i)} = \text{CPI}_{\text{per}(i)} \times \text{SPI}_{\text{per}(i)}, \]

where EV_cum(i), AC_cum(i), and AT_cum(i) denote the respective cumulative values from the beginning of the project to period i for EV, AC, and AT.

5. Weibull analysis

Used to model data sets containing values greater than zero, such as failure data, Weibull analysis can perform several functions such as making predictions about a product’s life and comparing the reliability of competing product designs [9]. The statistical method for plotting and evaluating data using Weibull analysis was developed by Johnson [14,15]. It is assumed that a straight line is representative of the data, although in many cases the data loci are not linear. By using the method of least squares, a straight line is drawn through an array of points on each plot. Dorner [9] originally presented an example showing a detailed procedure for using Microsoft Excel to perform Weibull analysis, which was used to compare the reliability of two proposed designs for a jack-in-the-box spring housing in a toy-manufacturing company. Nassar et al. [21] presented a similar approach for evaluating the schedule performance of two ongoing projects.

Weibull analysis essentially entails fitting a Weibull distribution to a collected data set about some characteristic of a system (usually a quality or performance characteristic) and assessing the reliability of the system on the basis of the fitted distribution [21]. The Weibull probability density function (PDF) is given by [19]

\[f(x) = \frac{\beta}{\alpha} \left(\frac{x - \gamma}{\alpha}\right)^{\beta-1} \exp\left(-\frac{x - \gamma}{\alpha}\right)^\beta, \]

\[\beta > 0, \quad \alpha > 0, \quad x > \gamma > 0. \]

The Weibull cumulative distribution function (CDF) is given by

\[F(x) = 1 - \exp\left(-\left(\frac{x - \gamma}{\alpha}\right)^\beta\right). \]

Parameters \(\alpha, \beta, \) and \(\gamma \) are the shape, scale, and location parameters, respectively. From Equation (12) and by letting \(\gamma = 0, \) then make the double logarithmic transformation of the CDF. The relation between CDF and two parameters \((\alpha, \beta) \) can be obtained as follows:

\[\ln \ln \left[\frac{1}{1 - F(x)} \right] = \beta \ln x - \beta \ln \alpha. \]

Equation (13) is an equation of a straight line. Comparing this equation to a straight line: \(y = mx + b, \) we see that the left-hand side of the equation corresponds to \(y, \) \(lnx \) corresponds to \(x, \) \(\beta \) corresponds to \(m, \) and \(-\beta \ln \alpha \) corresponds to \(b. \) Thus, when we perform the linear regression, the estimate for the Weibull \(\beta \) parameter comes directly from the slope of the line. The estimate for the \(\alpha \) parameter must be calculated as follows: \(\alpha = e^{-\beta/\beta}. \)

Many methods (such as median rank, least squares, and maximum likelihood) exist for estimating the Weibull distribution parameters \((\alpha, \beta) \)
from a given data set. The one used here is the median ranking method. The median rank of each data point is calculated next as \(\frac{\text{rank no.}}{\text{C0}^{0.3}} \div (\text{no. of points} + 0.4) \). The main advantage of the median rank method is its relative simplicity and ease of use, which makes it an ideal method for project managers. The underlying concept of this method is that, by using an appropriate transformation, the two-parameter Weibull model \((\alpha, \beta)\) can be represented by a straight line; therefore, the two parameters \((\alpha, \beta)\) can be determined by using simple linear regression \([16]\).

6. Example

In this section, a detailed description of Weibull analysis by using EV metrics is illustrated in five projects. Each of the projects, with different sizes ranging from 9 to 24 and different performance, is presented. The data of the five construction projects are summarized in Table 2. Projects A–C, drawn from Vandevoorde and Vanhoucke [28], are already completed, while projects D and E, from Nassar et al. [21], are still on-going. The duration of project A is 9 months, with a BAC of €360,738. At completion, project A is delivered 4 months later than expected, but under budget with AC €349,379. Completed project B was behind schedule with a cost over-run, while completed project C was ahead of schedule but under cost. Projects D and E are ongoing but approaching completion. Both are lagging behind with cost over-runs. The two projects have similar schedule performance, but probably different cost performance. Before proceeding the Weibull analysis, the periodic values of the ES, CPI, SPI\((t)\), and CR\((t)\) metrics must be calculated based on the PV, EV, and AC data of each project. The detailed procedures of computing the foregoing metrics are introduced in Section 4 and the computational results are shown in Tables 3–7.

An \(F\)-test of the analysis of variance reveals no statistical difference among average CR\((t)\) for the five projects \((p\)-value = 0.42\), data shown in Tables 3–7. Although the sample average is a simple measure of central tendency, it does not give information about the spread or shape of the distribution of overall performance index. Can the average values of CR\((t)\) for the five projects not be significantly different while the overall project performance associated with each is quite different? How can one be more scientific about comparing the overall project performance associated with the five projects?

6.1 Preparation for analysis

Modeling the data of an overall performance index using Weibull analysis requires some preparation. By using the data of project A (shown in Table 3),

<table>
<thead>
<tr>
<th>Project</th>
<th>BAC</th>
<th>AC</th>
<th>EV</th>
<th>Planned duration</th>
<th>Actual duration</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>360,738</td>
<td>349,379</td>
<td>360,738</td>
<td>9</td>
<td>13</td>
<td>Completed</td>
</tr>
<tr>
<td>B</td>
<td>2875</td>
<td>3247</td>
<td>2875</td>
<td>9</td>
<td>12</td>
<td>Completed</td>
</tr>
<tr>
<td>C</td>
<td>906</td>
<td>932</td>
<td>906</td>
<td>10</td>
<td>9</td>
<td>Completed</td>
</tr>
<tr>
<td>D</td>
<td>91,000</td>
<td>94,126</td>
<td>84,360</td>
<td>19</td>
<td>–</td>
<td>Ongoing</td>
</tr>
<tr>
<td>E</td>
<td>91,000</td>
<td>106,500</td>
<td>85,995</td>
<td>24</td>
<td>–</td>
<td>Ongoing</td>
</tr>
</tbody>
</table>

Note: Projects A to E are expressed in thousands of euro.
an example of the ES computation can be illustrated. The EV is accrued at the end of month 3, thereby making AT equal to 3. Thus, EV = 89,135; moreover, all of the PV through month 2, PV2 = 81,681, has been earned. However, only a portion of month 3 has been completed. Therefore, the duration of the completed portion of the planned schedule is in excess of 2 months; thus, n = 2. ES_cum(3) = n + (EV - PV2)/(PV2 - PV1) = 2 + (89,135 - 81,681)/(91,681 - 81,681) = 2.745. To calculate the overall performance index CR(t) at the end of month 3, the respective periodic values for ES, CPI, and SPI(t) must be computed in advance. The computational details are described as follows:

\[
ES_{cum}(3) = n + \frac{EV}{C0 \cdot PV_n} = 2 + \frac{89,135}{81,681} \times \frac{1.04}{1.04} = 2.745.
\]

To calculate the overall performance index CR(t) at the end of month 3, the respective periodic values for ES, CPI, and SPI(t) must be computed in advance. The computational details are described as follows:

<table>
<thead>
<tr>
<th>Month (i)</th>
<th>PV</th>
<th>EV</th>
<th>AC</th>
<th>ES_cum</th>
<th>ES_per(i)</th>
<th>SPI(i)_per(i)</th>
<th>CPI_per(i)</th>
<th>CR(t)_per(i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>28,975</td>
<td>25,645</td>
<td>25,567</td>
<td>0.885</td>
<td>0.885</td>
<td>0.885</td>
<td>1.003</td>
<td>0.888</td>
</tr>
<tr>
<td>2</td>
<td>81,681</td>
<td>68,074</td>
<td>66,293</td>
<td>1.742</td>
<td>0.857</td>
<td>0.857</td>
<td>1.042</td>
<td>0.893</td>
</tr>
<tr>
<td>3</td>
<td>91,681</td>
<td>89,135</td>
<td>78,293</td>
<td>2.745</td>
<td>1.004</td>
<td>1.004</td>
<td>1.755</td>
<td>1.762</td>
</tr>
<tr>
<td>4</td>
<td>138,586</td>
<td>125,244</td>
<td>124,073</td>
<td>3.716</td>
<td>0.970</td>
<td>0.970</td>
<td>0.789</td>
<td>0.765</td>
</tr>
<tr>
<td>5</td>
<td>218,141</td>
<td>198,754</td>
<td>191,367</td>
<td>4.756</td>
<td>1.041</td>
<td>1.041</td>
<td>1.092</td>
<td>1.137</td>
</tr>
<tr>
<td>6</td>
<td>302,478</td>
<td>268,763</td>
<td>259,845</td>
<td>5.600</td>
<td>0.844</td>
<td>0.844</td>
<td>1.022</td>
<td>0.863</td>
</tr>
<tr>
<td>7</td>
<td>323,632</td>
<td>292,469</td>
<td>285,612</td>
<td>5.600</td>
<td>0.844</td>
<td>0.844</td>
<td>1.022</td>
<td>0.863</td>
</tr>
<tr>
<td>8</td>
<td>345,876</td>
<td>306,725</td>
<td>290,843</td>
<td>6.201</td>
<td>0.732</td>
<td>0.732</td>
<td>2.725</td>
<td>0.871</td>
</tr>
<tr>
<td>9</td>
<td>360,738</td>
<td>312,864</td>
<td>303,489</td>
<td>6.491</td>
<td>0.692</td>
<td>0.692</td>
<td>1.146</td>
<td>0.793</td>
</tr>
<tr>
<td>10</td>
<td>327,694</td>
<td>316,431</td>
<td>312,864</td>
<td>6.491</td>
<td>0.692</td>
<td>0.692</td>
<td>1.146</td>
<td>0.793</td>
</tr>
<tr>
<td>11</td>
<td>338,672</td>
<td>320,690</td>
<td>312,864</td>
<td>6.491</td>
<td>0.692</td>
<td>0.692</td>
<td>1.146</td>
<td>0.793</td>
</tr>
<tr>
<td>12</td>
<td>349,861</td>
<td>336,756</td>
<td>320,690</td>
<td>6.491</td>
<td>0.692</td>
<td>0.692</td>
<td>1.146</td>
<td>0.793</td>
</tr>
<tr>
<td>13</td>
<td>360,738</td>
<td>349,379</td>
<td>336,756</td>
<td>6.491</td>
<td>0.692</td>
<td>0.692</td>
<td>1.146</td>
<td>0.793</td>
</tr>
</tbody>
</table>

Table 3. Periodic values of project A.

<table>
<thead>
<tr>
<th>Month (i)</th>
<th>PV</th>
<th>EV</th>
<th>AC</th>
<th>ES_cum</th>
<th>ES_per(i)</th>
<th>SPI(i)_per(i)</th>
<th>CPI_per(i)</th>
<th>CR(t)_per(i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>375</td>
<td>325</td>
<td>344</td>
<td>0.867</td>
<td>0.867</td>
<td>0.867</td>
<td>0.945</td>
<td>0.819</td>
</tr>
<tr>
<td>2</td>
<td>525</td>
<td>427</td>
<td>452</td>
<td>1.347</td>
<td>0.480</td>
<td>0.480</td>
<td>0.944</td>
<td>0.453</td>
</tr>
<tr>
<td>3</td>
<td>850</td>
<td>735</td>
<td>796</td>
<td>2.646</td>
<td>1.299</td>
<td>1.299</td>
<td>0.895</td>
<td>1.163</td>
</tr>
<tr>
<td>4</td>
<td>1355</td>
<td>1025</td>
<td>1056</td>
<td>3.347</td>
<td>0.700</td>
<td>0.700</td>
<td>1.115</td>
<td>0.781</td>
</tr>
<tr>
<td>5</td>
<td>1768</td>
<td>1453</td>
<td>1562</td>
<td>4.237</td>
<td>0.891</td>
<td>0.891</td>
<td>0.846</td>
<td>0.753</td>
</tr>
<tr>
<td>6</td>
<td>2123</td>
<td>1779</td>
<td>1922</td>
<td>5.017</td>
<td>0.780</td>
<td>0.780</td>
<td>0.892</td>
<td>0.695</td>
</tr>
<tr>
<td>7</td>
<td>2452</td>
<td>2024</td>
<td>2256</td>
<td>5.717</td>
<td>0.700</td>
<td>0.700</td>
<td>0.749</td>
<td>0.524</td>
</tr>
<tr>
<td>8</td>
<td>2625</td>
<td>2190</td>
<td>2451</td>
<td>6.199</td>
<td>0.482</td>
<td>0.482</td>
<td>0.851</td>
<td>0.410</td>
</tr>
<tr>
<td>9</td>
<td>2875</td>
<td>2356</td>
<td>2676</td>
<td>6.706</td>
<td>0.508</td>
<td>0.508</td>
<td>0.738</td>
<td>0.375</td>
</tr>
<tr>
<td>10</td>
<td>2565</td>
<td>2925</td>
<td>7.653</td>
<td>0.947</td>
<td>0.947</td>
<td>0.947</td>
<td>0.839</td>
<td>0.795</td>
</tr>
<tr>
<td>11</td>
<td>2735</td>
<td>3138</td>
<td>8.440</td>
<td>0.787</td>
<td>0.787</td>
<td>0.787</td>
<td>0.798</td>
<td>0.628</td>
</tr>
<tr>
<td>12</td>
<td>2875</td>
<td>3247</td>
<td>9.000</td>
<td>0.560</td>
<td>0.560</td>
<td>0.560</td>
<td>1.284</td>
<td>0.719</td>
</tr>
</tbody>
</table>

Table 4. Periodic values of project B.

<table>
<thead>
<tr>
<th>Month (i)</th>
<th>PV</th>
<th>EV</th>
<th>AC</th>
<th>ES_cum</th>
<th>ES_per(i)</th>
<th>SPI(i)_per(i)</th>
<th>CPI_per(i)</th>
<th>CR(t)_per(i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>34</td>
<td>36</td>
<td>35</td>
<td>1.059</td>
<td>1.059</td>
<td>1.059</td>
<td>1.029</td>
<td>1.089</td>
</tr>
<tr>
<td>2</td>
<td>87</td>
<td>93</td>
<td>95</td>
<td>2.086</td>
<td>1.027</td>
<td>1.027</td>
<td>0.950</td>
<td>0.976</td>
</tr>
<tr>
<td>3</td>
<td>157</td>
<td>169</td>
<td>174</td>
<td>3.056</td>
<td>0.970</td>
<td>0.970</td>
<td>0.962</td>
<td>0.933</td>
</tr>
<tr>
<td>4</td>
<td>373</td>
<td>402</td>
<td>412</td>
<td>4.165</td>
<td>1.109</td>
<td>1.109</td>
<td>0.979</td>
<td>1.086</td>
</tr>
<tr>
<td>5</td>
<td>549</td>
<td>597</td>
<td>623</td>
<td>5.387</td>
<td>1.222</td>
<td>1.222</td>
<td>0.924</td>
<td>1.130</td>
</tr>
<tr>
<td>6</td>
<td>673</td>
<td>735</td>
<td>754</td>
<td>6.496</td>
<td>1.109</td>
<td>1.109</td>
<td>1.053</td>
<td>1.168</td>
</tr>
<tr>
<td>7</td>
<td>789</td>
<td>839</td>
<td>874</td>
<td>7.932</td>
<td>1.436</td>
<td>1.436</td>
<td>0.867</td>
<td>1.244</td>
</tr>
<tr>
<td>8</td>
<td>842</td>
<td>887</td>
<td>932</td>
<td>8.367</td>
<td>0.435</td>
<td>0.435</td>
<td>0.828</td>
<td>0.360</td>
</tr>
<tr>
<td>9</td>
<td>876</td>
<td>906</td>
<td>952</td>
<td>10.000</td>
<td>1.633</td>
<td>1.633</td>
<td>0.950</td>
<td>1.552</td>
</tr>
</tbody>
</table>

Table 5. Periodic values of project C.
project A are given in Table 3. Similarly, the values for projects B–E are listed in Tables 4–7, respectively.

6.2 Fitting a line to data

Once the periodic values for CR(\(t\)) of a project have been calculated, the next step is to fit the CR(\(t\)) data of each project to the Weibull CDF by proceeding to Steps 2–4, shown in Table 8. A simple approach, the median ranking method, is used to estimate the distribution of the parameters (\(\alpha\), \(\beta\)). The approach is first to rank the CR(\(t\)) values for project A in ascending order and place their respective rank in the second column. The median rank of each data point is calculated next as \((\text{rank no.} / C_{0.3}) / (\text{no. of points} + 0.4)\). For example, for project A the third point median rank is equal to \((3 / 0.3) / (13 + 0.4) = 0.2015\). As shown in Equation (13), values of \(\ln[\ln[1/(1 - \text{median rank})]]\) and \(\ln(\text{CR}(t))\)
for the CR(t) data points are calculated in columns 5–6. At this point, the Weibull analysis is ready to be performed. The Analysis ToolPak add-in that is built into Microsoft Excel was used for the regression analysis to evaluate scale and shape (λ and β) parameters. It finds that $\lambda = 0.962$ and $\beta = 1.629$.

An identical analysis using the projects B–E data yields the respective values of λ and β. Table 9 lists the parameters for each project from regression analysis.

6.3 Interpreting the results

The Weibull shape parameter, called β, indicates whether the failure rate is increasing, constant or decreasing. Here, the shape parameter β indicates whether the overall performance of the project in terms of CR (t) is increasing, constant or decreasing. A $\beta > 1.0$ indicates that the project has an increasing overall performance, i.e., there is an improvement in the performance of the project from one index value to another. A $1 < \beta < 2$ indicates that the overall performance increases at a decreasing rate as index value increases. When $\beta > 2$, the overall performance is on a slope, increasing as the index value increases. A $\beta = 1.0$ indicates that the project has a constant overall performance index rate; however, a $\beta < 1.0$ indicates a decreasing index rate. The desired rate is therefore a $\beta > 1.0$. In the example, the shape parameter values of projects A, D, and E are 1.6294, 1.0406, and 1.9676, respectively, indicating that the overall performance of these projects increases at a decreasing rate as the index value increases. In addition, the shape parameter values of projects B and C are 3.3278 and 2.3971, respectively, both of which are larger than 2.0. These values indicate that the overall performance of projects B and C is on a slope, thus increasing as the index value increases. From this perspective, projects B and C are superior to that of the others.

The scale parameter λ (the Weibull characteristic life) is a measure of performance variability. A high λ indicates more variability in the overall project performance in terms of the index values. The Weibull characteristic life λ is a measure of the scale, or spread, in the distribution of data, which happens to equal the value at which 63.2% of the overall performance index has failed to achieve. In the example, projects C and D have about 37% of the overall performance index, which succeeds in attaining 1.24 and 1.044, respectively; whereas projects A, E, and B, achieve 0.962, 0.8763, and 0.755, respectively. From this perspective, project C is the best; the next, project D; and the worst, project B.
Table 10. Reliability of each project.

<table>
<thead>
<tr>
<th>Index value</th>
<th>Project A</th>
<th>Project B</th>
<th>Project C</th>
<th>Project D</th>
<th>Project E</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Performance probability</td>
<td>Reliability</td>
<td>Performance probability</td>
<td>Reliability</td>
<td>Performance probability</td>
</tr>
<tr>
<td>0.1</td>
<td>0.0247</td>
<td>0.9753</td>
<td>0.0012</td>
<td>0.9988</td>
<td>0.0024</td>
</tr>
<tr>
<td>0.2</td>
<td>0.0744</td>
<td>0.9256</td>
<td>0.0119</td>
<td>0.9881</td>
<td>0.0125</td>
</tr>
<tr>
<td>0.3</td>
<td>0.1390</td>
<td>0.8610</td>
<td>0.0452</td>
<td>0.9548</td>
<td>0.0328</td>
</tr>
<tr>
<td>0.4</td>
<td>0.2127</td>
<td>0.7873</td>
<td>0.1136</td>
<td>0.8864</td>
<td>0.0643</td>
</tr>
<tr>
<td>0.5</td>
<td>0.2910</td>
<td>0.7000</td>
<td>0.2238</td>
<td>0.7762</td>
<td>0.1072</td>
</tr>
<tr>
<td>0.6</td>
<td>0.3706</td>
<td>0.6294</td>
<td>0.3718</td>
<td>0.6282</td>
<td>0.1610</td>
</tr>
<tr>
<td>0.7</td>
<td>0.4485</td>
<td>0.5515</td>
<td>0.5399</td>
<td>0.4601</td>
<td>0.2243</td>
</tr>
<tr>
<td>0.8</td>
<td>0.5228</td>
<td>0.4772</td>
<td>0.7020</td>
<td>0.2980</td>
<td>0.2952</td>
</tr>
<tr>
<td>0.9</td>
<td>0.5919</td>
<td>0.4081</td>
<td>0.8333</td>
<td>0.1667</td>
<td>0.3712</td>
</tr>
<tr>
<td>1.0</td>
<td>0.6580</td>
<td>0.3450</td>
<td>0.9215</td>
<td>0.0785</td>
<td>0.4496</td>
</tr>
<tr>
<td>1.1</td>
<td>0.7115</td>
<td>0.2885</td>
<td>0.9696</td>
<td>0.0304</td>
<td>0.5279</td>
</tr>
<tr>
<td>1.2</td>
<td>0.7612</td>
<td>0.2388</td>
<td>0.9906</td>
<td>0.0094</td>
<td>0.6033</td>
</tr>
<tr>
<td>1.3</td>
<td>0.8044</td>
<td>0.1956</td>
<td>0.9977</td>
<td>0.0023</td>
<td>0.6737</td>
</tr>
<tr>
<td>1.4</td>
<td>0.8414</td>
<td>0.1586</td>
<td>0.9996</td>
<td>0.0004</td>
<td>0.7376</td>
</tr>
<tr>
<td>1.5</td>
<td>0.8726</td>
<td>0.1274</td>
<td>0.9999</td>
<td>0.0001</td>
<td>0.7937</td>
</tr>
<tr>
<td>1.6</td>
<td>0.8986</td>
<td>0.1014</td>
<td>1.0000</td>
<td>0.0000</td>
<td>0.8416</td>
</tr>
<tr>
<td>1.7</td>
<td>0.9201</td>
<td>0.0799</td>
<td>1.0000</td>
<td>0.0000</td>
<td>0.8812</td>
</tr>
<tr>
<td>1.8</td>
<td>0.9375</td>
<td>0.0625</td>
<td>1.0000</td>
<td>0.0000</td>
<td>0.9131</td>
</tr>
<tr>
<td>1.9</td>
<td>0.9516</td>
<td>0.0484</td>
<td>1.0000</td>
<td>0.0000</td>
<td>0.9381</td>
</tr>
<tr>
<td>2.0</td>
<td>0.9628</td>
<td>0.0372</td>
<td>1.0000</td>
<td>0.0000</td>
<td>0.9570</td>
</tr>
</tbody>
</table>
In the foregoing discussion, in terms of overall performance, it is difficult to determine which project is the best. Hence, the reliability of the overall performance of each project is calculated next.

6.3.1 Calculating reliability of overall performance

The next step is to determine the reliability of achieving a particular index value for overall performance, i.e. the CR(t). If the probability of achieving a CR(t) value close to or more than 1 is high, then this indicates that the overall project performance has a strong chance of finishing on target. This can be thought of as the reliability of achieving a particular CR(t) value and is equal to 1 – “the performance probability”. The performance probability can be easily calculated by using the built-in Weibull function in Excel as: =WEIBULL (index value, shape parameter, scale parameter, and TRUE). TRUE indicates a cumulative distribution function. The range of index values of overall performance is set at 0.1–2.0 in 0.1 increments. Table 10 shows the performance probability and the reliability of each project.

6.4 Comparison of overall performance

In the final step, the five projects are compared in terms of reliability by using a performance graph, the results of which are plotted in Figure 3, which allows a comprehensive comparison of performance probability. A number of issues can be pointed out from the graph (or one can examine the probability of an index values). From the performance graph one can examine the probability of achieving a particular CR(t) value for a project. Thus, the overall performance of each project can be easily evaluated and compared. In the example, one can see that project C has a probability of about 0.554 of achieving the target, CR(t) = 1.0; whereas projects D, A, E, and B have only about 0.384, 0.345, 0.273, and 0.079, respectively.

According to Chang [6], index values equal to or above 0.9 indicate average to above-average performance (from average to excellent) and index values less than 0.9 indicate performance less than average (from average to unsatisfactory). From Table 10 or Figure 3, project C always has the highest probability of attaining the above-average performance, for CR(t) = 0.9–1.4; project D, the second; and then projects A, E, and B, in sequence. Hence, one can conclude that project C has the best overall performance; project D, the second; then A and E; whereas project B, has the worst.

Based on the obtained results of Weibull analysis, the proposed approach can help management to effectively evaluate and compare the overall performance of projects, although there may be no significant difference among projects by the F-test.

7. Conclusion

In many organizations, more than one project is often executed concurrently. A major issue for each organization is how to measure and evaluate the performance of each project and to compare the overall performance of the various projects. This report has first introduced a novel overall project performance index and proposed a simple and reliable approach which applies Weibull analysis to evaluate and compare the relative overall performance on EV metrics. The index can easily be calculated on the basis of the EV data which are normally available from a project cost system instead of collecting a vast amount of complex data. An example consisting of five actual projects has illustrated a step-by-step approach for evaluating and comparing overall project performance. Moreover, the analysis is fairly straightforward and
can be easily implemented in Microsoft Excel for not only completed projects but also ongoing ones.

Based on the obtained results of Weibull analysis on the basis of CR(t) data, the author therefore concludes that the proposed approach can provide a robust and effective method for managers to evaluate and compare the overall performance of projects, and can be applicable in evaluating the project whose value has been determined.

Acknowledgements
The author thanks Cheryl Rutledge, Associate Professor of English, Dayeh University, for her editorial assistance, and two anonymous referees for their valuable comments and suggestions.

Notes on contributor
Ching-Chih Tseng is an Associate Professor in the Department of Business Administration Management at Dayeh University, Taiwan. He received his Bachelor’s and Master’s degrees in Industrial Management from National Cheng Kung University, Taiwan, in 1985 and his PhD degree in Industrial Engineering and Management from Tokyo Institute of Technology, Japan, in 1996. His research activities include project management, multi-criteria decision analysis, quality function deployment for product design and development, and e-commerce.

References

運用Weibull分析於實獲值度量比較專案整體績效的統計分析

曾清枝
大葉大學企業管理學系
51591彰化縣大村鄉大學路168號

摘要

大多數組織評估專案績效主要是以實獲值管理衡量專案成本和時程績效。然而，至目前專案管理文獻中僅提出少許工具以比較專案間整體績效。本研究介紹一個簡單指標CR(0)以時間計關鍵比，作為衡量專案的整體績效。此指標可依從專案成本系統中正常獲得的實獲值資料簡單地計算求得。根據此指標，本論文提出運用Weibull分析實獲值度量以比較專案整體績效的統計分析，統計分析可在MS EXCEL上執行。本論文藉由五個案例專案依詳細步驟分析並加以比較專案間之績效。最後，依照分析比較結果，本論文所提方法可以提供管理者一個適切且有效地評估和比較專案間之績效的方法。也可以適用於評估專案價值已確定的合約專案。

關鍵詞：實獲值度量，以時間計關鍵比，專案績效，Weibull分析

(*聯絡人: cctseng@mail.dyu.edu.tw)