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ABSTRACT 
     Many studies on the resource-constrained project-scheduling problem have been published, but 

literature further considering multi-mode or multi-project issues often occurring in the real world is 

rather scarce.  In this research, two heuristic algorithms are developed to solve a multi-mode 

resource-constrained multi-project scheduling problem (MMRCMPSP).  The first, a parallel 

scheduling algorithm (PSA), includes a combination of an activity- and a mode-priority rule; the 

second is a genetic algorithm (GA).  The solutions obtained by the former algorithm with the best 

activity- and mode-priority rule combination are used as a baseline to compare those obtained by the 

latter.  On four sets of test problems, twenty combinations of rules are compared to determine the 

best one for deriving the most likely best solution in the proposed PSA.  In each set, two 

resource-availability levels and two due-date levels are considered.  Due to certain priority rules’ 

having probabilistic factors, a two-stage sampling method is introduced to ensure that more reliable 

computational results are obtained.  Finally, the solutions obtained by the proposed PSA having the 

best activity- and mode- priority rule combination are compared on the test problems with those 

obtained by the proposed GA.  Finally, conclusions are drawn from the computational results.  

Key Words: multi-project scheduling, parallel scheduling algorithm, genetic algorithm, two-stage 

sampling 
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摘 要 

  至今有大量關於資源限制排程問題被發表，但對於探討多模式甚至於多專案之文獻卻相對

稀少。因此，本文針對多模式資源限制多專案排程問題提出二個啟發式演算法，分別是結合作

業和模式優先派遣法組合之平行排程演算法和遺傳演算法。依據前者演算法在四組模擬測試問

題中比較 20 個作業和模式組合後，選出最可能求得最佳解之作業和模式最佳組合當作後者演



 

Journal of Science and Engineering Technology, Vol. 4, No. 2, 2008 

                                                        

64 

算法之比較基礎。在每一組問題中，考慮二個資源可用量水準和二個限制工期水準。由於某些

排程法則含有機率因子，兩階段抽樣方法被導入以確保可獲得更可靠的模擬結果。最後本文就

所提出平行排程演算法使用最佳作業和模式優先派遣法組合，和所提出之遺傳演算法作模擬比

較，結果發現所提出之遺傳演算法優於所提出平行排程演算法。 

關鍵詞：多專案排程，平行排程演算法，遺傳演算法，兩階段抽樣方法 

 

I. INTRODUCTION 
     A resource constrained project scheduling problem 
(RCPSP) is important and challenging to both practitioners and 
mathematicians.  In project management practice, more than 
one project is often performed simultaneously under limited 
resources within the same organization.  Planners are 
generally concerned with a number of different decision 
criteria, often conflicting among each other, according to their 
importance and priorities.  Hence, the allocation of scarce 
resources among different projects to achieve the optimization 
of an objective function is an important consideration for a 
project manager. 
     The multi-mode resource-constrained multi-project 
scheduling problem (MMRCMPSP) is a generalized case of the 
RCPSP.  The MMRCMPSP consists of a number of projects, 
defined as collections of activities performed in one of several 
ways under given precedence relationships and limited amounts 
of various types of resources.  The RCPSP belongs to the 
class of NP-hard problems identified by Blazewicz et al [2], 
their general form, MMRCMPSP, also being NP-hard.  Many 
publications have provided various approaches for 
investigating diverse versions of project scheduling problems.  
Most methods concentrate on a single project problem in which 
each activity is processed in only one way, called a single 
mode, or more than one way, called multi-mode.  In multiple 
modes each activity can be processed in one of several ways, 
wherein each execution mode is characterized by a known 
duration and given resource requirements.  The multi-modes 
RCPSP was introduced by Elmaghraby [9].  Many exact and 
heuristic algorithms have been proposed by researchers [1, 3-5, 
13, 20, 25, 27, 28].  Kolisch and Padman [15] surveyed a vast 
literature in this area from a perspective that integrates models, 
data, and optimal and heuristic algorithms for the major classes 
of project scheduling problems.  
     Concerning the resource constrained multi-project 
scheduling problem (RCMPSP), only a few studies have been 
published.  The pioneering work on multi-project scheduling 
was done by Pritsker et al. [26], who proposed a zero-one 
programming approach.  Kurtulus and Davis [16], when 
considering the multi-project scheduling problem, provided a 
categorization process based on two powerful project summary 

measures.  Kurtulus and Narula [17] examined the 
performance of ten scheduling rules for a multi-project 
environment.  Lova et al. [21] developed a multicriteria 
heuristic that lexicographically improves two criteria: one-time 
type such as mean project delay or multiproject duration 
increase; and no one-time type such as project splitting, 
in-process inventory, resource leveling or idle resources.  
     Lee and Lei [19] presented efficient algorithms for 
solving several special cases of such multi-project scheduling 
problems by imposing controllable project duration and 
hard-resource budget constraints.  Lova and Tormas [22] 
examined the effect of two schedule generation schemes and 
five activity priority rules in single-project and multi-project 
environment.  Kim et al. [23] proposed a hybrid genetic 
algorithm with fuzzy logic controller to solve the RCMPSP.  
The multi-project scheduling environment which they 
considered is in a series rather than parallel.  The basic idea of 
their proposed approach is to use a serial method which 
considers priority-based encoding to find an appropriate order 
of activities.  Then, a hybrid genetic algorithm with a fuzzy 
logic controller comprising specific heuristics is used to 
determine the early finish times for multiple projects.  
Goncalves et al. [12] presented a genetic algorithm for the 
RCMPSP, the chromosome representation of the problem being 
based on random keys.  The schedules are constructed by 
using a heuristic that builds parameterized active schedules 
based on priorities, delay times, and release dates defined by 
the genetic algorithm.  However, there appears to be no 
literature on MMRCMPSP. 
     In this research two heuristic algorithms are proposed to 
solve the MMRCMPSP.  The first, called a parallel scheduling 
algorithm, includes a combination of an activity- and a mode- 
priority rules; the second, a genetic algorithm.  The solutions 
obtained by the former algorithm with the best activity- and 
mode- priority rule combination are used as a baseline to 
compare those by the latter one.  
     The structure of this paper is as follows: in Section 2 the 
considered problem is described.  In Section 3, a parallel 
scheduling algorithm for the MMRCMPSP and some activity- 
and mode- priority rules are introduced.  In Section 4, a 
genetic algorithm for the MMRCMPSP is developed.  Section 
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5 consists of three parts: Part one describes a test problems 
generator for MMRCMPSP; part two introduces a two-stage 
sampling procedure to determine necessary replications to 
obtain a more reliable best combination of activity- and mode- 
priority rules which are the most likely to find the maximal 
solution of MMRCPSP; part three provides a comparison of the 
GA and the PSA including the best rule combination.  
 

II. PROBLEM STATEMENT 
     The considered problem consists of I parallel projects, 
each project i=1,…, I, being composed of Ji activities ij, j=1,…, 
Ji. Each project i also has two common dummy activities: 
source and sink.  Activity ij in project i may be performed in 
one of the modes m=1,…, Mij.  Each activity, once initiated in 
a specific mode, must be finished without changing the mode.  
The activities are interrelated by two kinds of constraints, the 
first being precedence constraints, which force each activity ij 
in project i to be scheduled after all its predecessors Pij are 
finished.  The second type consists of resource constraints, 
which restrain the activities to be processed, subject to the 
limited availability of resources.  While being processed, 
activity ij in project i performed in mode m requires qijmr units 
of renewable resource type r= 1,.., R, during each period of its 
non-preemptive duration dijm.  Resource type r has a fixed and 
limited available amount Qr. 
     For project i, it is assumed that a known and 
predetermined due date, DDi, exists.  In comparing to the 
completion time, Ci, of project i, two types of costs, early 
completion incentives, ECi, and late completion penalties, LCi, 
are considered.  The former represents benefits obtained by 
completing a project earlier than the due date; whereas, the 
latter represents penalties for missing the due date.  This 
problem is common in practice, and is confronted by 
contractors, engineering firms, maintenance crews, research 
and development teams, and similar organizations, all of which 
must simultaneously manage a number of projects subject to 
finite resources and due date constraints. 
     The objective is to maximize the weighted profit of 
projects.  Thus, the objective function can be written as 
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     Before the two proposed heuristic algorithms are 
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are defined as 
 
 

.otherwise
,if

}ip:}),...,m|{{(
P

PMdminESmaxES ij

ijijijmmipip
ij

φ=

⎪⎩

⎪
⎨
⎧

∈=+
=

1
0

 
 (2) 
 

.}:}),...,1|min{{(min
,},max{

otherwiseSisMmdLF
SifSCPLDD

LF
ijijijmisis

ijii
ij ∈=−

=

⎩
⎨
⎧

=
φ  

 (3) 
 

     The term ESij (LFij) denotes the early start time (late 
finish time) of activity ij; Pij (Sij) denotes the set of immediate 
predecessor (successor) activities to activity ij; SCPLi is the 
critical path length of project i having the shortest duration 
mode for each activity. 
     As above-mentioned in introduction section, MMRCPSP 
belongs to NP-hard problem.  The currently most powerful 
optimization procedures are unable to optimally solve highly 
resource-constrained projects with more than 20 activities and 
three execution modes per activity within reasonable 
computation times [27].  This is the reason that two heuristic 
algorithms are proposed.  

 
III. PARALLEL SCHEDULING ALGORITHM 
     During the scheduling of multiple projects, the activities 
in an eligible set (a set of activities eligible to be scheduled at 
the current time), EJ, cannot be processed concurrently due to a 
resource conflict.  (Activities are said to be resource conflict 
when their requirements exceed the currently available level of 
at least one type of resource.)  In this situation the concern is 
how to decide which activity in EJ should be scheduled first 
and in which mode it should be performed.  On the basis of 
resource restrictions, the necessary sequence should be decided 
by a predetermined rule if any resource conflict occurs among 
the currently schedulable activities.  
     The parallel scheduling algorithm (PSA), first formulated 
by Fendley [10] to deal with RCMPSP, developed to solve the 
MMRCMPSP is described as follows.  Feasible solutions to 
this problem can be obtained by using the PSA.  Initially, set 
the clock time, tnow = 0, and place all activities ij of each project 
in the set of unscheduled activities, U.  At tnow = 0, or any 
subsequent time that an activity is finished, a new EJ is 
specified.  If a conflict in resources in EJ does not occur, all 
activities are added to the active set (i.e., the set of activities 
currently being processed).  If such a conflict occurs, decide 
which activity in EJ should be processed first according to one 
of the activity priority rules described in the first subsection 3.1 
below.  Concurrently, the mode which should be assigned to 
the selected activity can be decided by using one of the mode 
priority rules, also described in subsection 3.1.  Subtract the 
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remaining available amount of resource type k by the amount 
of resource type k required by the selected activity.  Then, 
place the selected activity in the active set.  Update the new 
EJ and repeat the process (i.e., to determine whether any other 
activity in the new eligible set can now be processed).  If the 
remaining available amount of any resource type k is not 
enough to process any activity of EJ or if the eligible set is 
empty, tnow is advanced to the earliest completion time of 
activities currently in the active set, the finished job is removed 
from the active set, and an EJ set is formed.  A schedule is 
completed when U is empty; the value of tnow is the completion 
time of a project.  

1. Activity Priority Rules 
     It is known that many activity priority rules exist.  Here 
four representative rules are considered.  
A. RAN-A (Randomly choose activity) rule: Randomly choose 

an activity from EJ to be processed.  This rule serves as a 
benchmark against which all other rules could be evaluated. 

B. MINLFT (Minimum Late Finish Time) rule: Schedule an 
activity with the minimum value of 
 

.,min EJijLFij
ij

∈  (4) 

Remark: Talbot [3] compared eight deterministic heuristic 
scheduling rules for multi-mode RCPSP and found that the 
MINLFT rule behaved better than the others. 

C. STOCOM-A (Stochastic Construction Method for activity 
selection) rule: Randomly select an activity from EJ in 
accordance with its corresponding probability in proportion 
to γij.  In this regret-based biased random priority rule 
proposed by Drexl and Gruenewald [8], the regret value of a 
candidate activity ij measures the worst-case consequence 
that might arise from selecting another activity.  Choose 
activity ij with proportional to γij. γij is defined as follows. 
 

( ) EJijijik LFEJikLFij ∈= ε+−∈γ
α}|max{ . (5) 

 
     This equation estimates the worst-case consequence of 
not scheduling activity ij with respect to LFij.  The expression 
ε > 0 makes γij always positive; whereas, α ≥ 0 transforms the 
term (.) in an exponential way, thus diminishing or forcing the 
difference between LF for α < 0 or α > 0.  As shown in [8], 
the optimal solutions occur with a high frequency at various 
problem instances when α = 2 and ε = 1. 
D. MINSL (Minimum Slack) rule: Schedule an activity with 

the minimum value of 
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     Where tnow denotes the current clock time previously 
mentioned in Section 3.  This rule was found effective in 
multi-project scheduling by many authors addressed in Davis 
and Patterson [6]. 

2. Mode Priority Rules 
     Once activity ij is chosen, assign mode m by one of the 
following rules. 
A. RAN-M (Randomly choose mode) rule: Randomly perform 

activity ij in mode m by derived from a uniform distribution 
from 1 to Mij. 

B. MINDM (Minimum duration mode) rule: Perform activity ij 
in mode m by using the minimum value of 
 

Md ijijm
m

m ,...,1,min =  (7) 

 
C. STOCOM-M (Stochastic Construction Method for mode 

selection) rule: As in activity priority rule 3, assign mode m 
to process activity ij in proportion to ωijm.  Randomly 
choose mode m*, which in proportion to ωijm for every 
activity ij ∈EJ and m=1, Mij.  ωijm is defined as 
 

MdMld ijijm mijmijijl ,...,1,)},...,1|(max{ == ε+−=ω
α  

 (8) 
 
The meanings of α and ε are the same as in activity priority 
rule 3. 

D. MAXDM (Maximum Duration Mode) rule: Perform activity 
ij in mode m by using the maximum value of 
 

.,...,1,max Md ijijm
m

m =  (9) 

 
E. MINRDM (Minimum Resource Demand Mode): Perform 

activity ij in mode m by using the minimum value of 
 

.,...,1,
1

min Mdq ijijm
R

r
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IV. GENETIC ALGORITHM FOR  

MULTI-PROJECT SCHEDULING 
PROBLEM 

     Genetic Algorithms (GAs) are optimization techniques 
for functions defined over finite domains.  First proposed by 
Holland [14], GAs have been successfully applied to a wide 
variety of problems [11].  In this study, a genetic algorithm for 
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MMRCMPSP is presented.  The approach is based on the 
incorporation of problem knowledge from the application 
domain into the genetic algorithm.  This approach particularly 
leads to a new complex non-standard representational scheme 
for chromosomes that comprises all information relevant to the 
search task.  The introduction of this expanded representation 
requires the definition of new domain-dependent crossover and 
mutation operators that take advantage of the additional 
information represented in the chromosomes. 

1. Direct Representation of Problem 
     In a direct problem representation the MMRCMPSP 
itself is used as a chromosome.  No decoding procedure is 
therefore necessary.  All information relevant to the 
MMRCMPSP at hand is included in the problem 
representation.  The proposed GA is the method that 
implements a search since the represented information 
comprises the entire search space, thus, neither a 
transformation procedure nor a schedule builder is further 
necessary. 
     Complete information of a schedule for the 
MMRCMPSP consists of an activity priority rule, activities and 
their corresponding modes in each individual project.  The 
activity priority rule is randomly chosen from the rules 
described in subsection 3.1; whereas the processing mode is 
uniformly generated from its available modes.  The scheme of 
the direct representation is sketched as shown in Figure 1.  
E.g. P1/A11Mα indicates that mode α is assigned to activity 11 
of project 1.  
     The MMRCMPSP is represented as an activity priority 
rule (abbreviated as j-r) plus a list of projects/activities/modes, 
as shown in Fig. 1.  The quality of a chromosome (i.e., its 
schedule) is measured by its fitness value (i.e., the weighted 
profit from the projects). 

2. Initialization 
     The initialization of a start generation of complete and 
consistent schedules can be accomplished by the following 
rules: 
A. For each chromosome, first randomly select one of the 

activity priority rules described in subsection 3.1 and place 
the selection in locus 1; then place each project as a locus in 
ascending order. 

B. For each locus except the first, the activity number is placed 

in ascending order, and the mode of each activity is 
randomly assigned from its available modes. 

     After one chromosome is built, the proposed PSA is 
employed to schedule this multi-project problem by using the 
selected activity priority rule under the precedence and 
resource constraints; thus, the fit value of this chromosome can 
be obtained. 

3. Sorting 
Once one generation consisting of a certain number of 

feasible schedules is constructed, the chromosomes are sorted 
in descending order by their fitness values (i.e., weighted 
profit). 

4. Genetic Operators 

A. Crossover 
     The crossover operator generates two offspring schedule 
by combining features of two selected parent schedules.  The 
scheme of the crossover operator is determined by selecting 
two parent schedulers, one being the schedule having the 
largest fitness value and the other being randomly chosen.  
The crossover operator has two parts: 

 A number k ∈ (1,I) chosen at random; 
 One offspring schedule consisting of the former projects 

(i.e., from 1 to k) of parent 1 and the latter (i.e., from k+1 
to I) of parent 2.  The other schedule is composed of the 
former projects (i.e., from 1 to k) of parent 2 and the 
latter (i.e., from k+1 to I) of parent 1.  For example, if k 
= 3 is chosen, two offspring schedules shown in   
Figure 2, can be obtained. If k is equal to 0, crossover the 
activity priority rule should be mutually crossed over. 

B. Mutation 
     The mutation operator must be able to alter all 
information represented in the chromosome.  It must also 
provide the possibility of reintroducing lost genetic material.  
Thus, two types are devised, one to change modes for selected 
activities, the other to generate a new schedule, as follows.  
Randomly select one schedule; 

 Randomly select ni (less than Ji ) activities for each 
project i;  

 Change the mode for the selected activities. 
     As in Figure 3, suppose that the activities marked by an 
asterisk (*) are selected, thus their modes are changed at 

 

j-r P1 P2 … PI 

 A11Mα A12Mβ … A1J1 Mγ A21Mα … A2J2Mγ … AI1Mα … AIJI Mγ 

 

Fig. 1. Direct representation of a schedule 
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random within the available scheme. 

5. New Generation 
     With an appropriate proportion, the operators described 
above can produce a new generation: 
A. Duplicate P1 offspring schedules from the parent having the 

largest fitness values (i.e., elitist preserving strategies). 
B. Produce P2 offspring schedules by using crossover operator. 
C. Produce P3 offspring schedules by using the mutation 

operator. 
D. Generate P4 offspring schedules at random. 
     P1+ P2+ P3+ P4 = P, with P indicating the number of 
schedules in one generation. 

 
V. COMPUTATIONAL RESULTS 

     The GA as well as PSA have been coded in C++ and 
performed on a Pentium III PC with 1.13 GHz clock-pulse and 
256 MB RAM. 

1. Generator of a Problem Instance 
     An MMRCMPSP problem instance generator, tailored 
from previous work [6], is proposed for generation by the 
following step. 
A. Set a problem size I, i.e., the number of projects.  
B. Set the number of activities Ji of project i, which is 

uniformly generated from the interval [(MAX-J/2) +1, 
MAX-J], where MAX-J, a predetermined value, denotes the 
maximal number of activities of a project in a problem 
instance. 

C. Set the complexity of project i, Fi, defined as the number of 
arcs (precedence relations) divided by the number of nodes 

(activities), of project i. 
D. Generate an activity network for each project i by using the 

random activity network generator proposed by 
Demeulemeester et al. [7] when Ji and Fi are given.  

E. Uniformly generated the (integer) number of modes of 
activity ij, Mij from the interval [2, 3]. 

F. Fixed the total number of renewable resource types R = 3. 
G. Uniformly generated the (integer) duration dijm of activity ij, 

performed in mode m, from the interval [5, 10]. 
H. Uniformly generated the amount qijmr of resource r required 

by activity ij, performed in mode m, from the interval [1, 5]. 
I. Determine the availability Qr of renewable resource type r 

by multiplying the peak resource requirement 
 
Q’

r= max { qijmr | i=1,…,I, ij=1,…,Ji, m=1,…, Mij} (11) 
 

with θ , thus obtaining Qr = Q’
r ⋅θ, r = 1,…,R with 2.0 ≤ θ ≤ 

4.0. 
     When given Ji and Fi, a network of project i can be 
generated. In this research, I = 5 and Fi = 2.5 are assumed for 
all problem instances. 

2. Identification of the Most Likely Best Combination of 
Rules  

     The main experimental factors considered in this study 
are two resource-availability levels (θ = 2.0, 4.0), two due-date 
tightness levels (for each project i, the due date DDi is set at 
one time or three times the corresponding LCPLi, for 
convenience, denoted as DD=LCPL and DD=3LCPL; LCPLi is 
the critical path length of project i having the longest duration 

j-r 1 P1 P2 P3 P4 P5  j-r 1 P1 P2 P3 P4’ P5’ 

    Parent 1                   ↑ ↓  ↑      Offspring 1 

j-r 2 P1’ P2’ P3’ P4’ P5’  j-r 2 P1’ P2’ P3’ P4 P5 

    Parent 2      Offspring 2 

 
Fig. 2. Example of crossover 

 
Parent Schedule 

j-r 1 P1 P2 P3 

 A11M2 A12M1* A13M1 A21M1 A22M1* A23M1 A31M1 A32M1 A33M1* A34M1 

⇓ Mutation 

Offspring Schedule 

j-r 1 P1 P2 P3 

 A11M2 A12M2 A13 M1 A21 M1 A22 M2 A23 M1 A31 M1 A32 M1 A33M1 A34 M1 

 
Fig. 3. Example of mutation 
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mode for each activity).  In each scenario (i.e., a combination 
of these two factors), 20 policies, combining the different 
activity priority rules with the mode priority rules, are 
implemented.  Here the objective is to identify the best policy 
for obtaining the maximal weighted project profit in each 
scenario.  During the simulation process, an immediate 
problem resides in certain priority rules, the probabilistic 
factors of which will affect the reliable output of the 
simulation.  In the following a two-stage sampling method is 
introduced to overcome this problem. 
     As described in [18, pp. 596-597], the two-stage 
sampling method stated below has a favorable property 
wherein, with a probability of at least Pr*, the expected 
response of the selected best policy will be larger than that of 
the second-best policy with d*, where d* denotes the 
indifference amount.  This method can determine how many 
replications of a policy should be performed to attain a reliable 
output from the simulation.  In the first stage, set a fixed 
number of replications for each policy, then use the resulting 
sample mean and variance estimates to determine how many 
more replications for each policy are necessary in the second 
stage to reach a reliable decision. 
First-stage Set n0 ≥ 2 replications for each policy i =1, 2,…,ρ 

(ρ represents the number of policies) and define the 
first-stage sample mean, ( )nX i 0

)1( , and variance, 

( )nSi 0
2 , as 

 

( )
n

X
nX

n
j ij

i
0

1
0

)1(
0∑ ==  (12) 

 
and 
 

( )
[ ]

1

)(

0

2
0

)1(
1

0
2

0

−

−
=
∑ =

n

nXX
nS iij

n
j

i  (13) 

 
     Then compute the total replications, Ni, necessitated for 
policy i as 
 

( )
( ) ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎥

⎥

⎤

⎢
⎢

⎢

⎡
+= τ

d

nsnN I
i

*
,1max 2

0
22

0  (14) 

 
where ⎡X⎤ is the smallest integer greater than or equal to the 
real number X, and τ (which depends on ρ, Pr*, and n0) is a 
constant ([18]). 
Second-stage Next, Ni - n0 additional replications of policy i 

are generated, for which the second-stage sample 

mean is computed as  
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     Then define the weight, Wi1, as 
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and set Wi2 = 1 - Wi1 for i = 1,2,…,ρ.  The weighted sample 
mean, ( )NX ii

~ of policy i can be computed as 
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)2(
20

)1(
1

~ −+=  (17) 

 
     Finally, select the policy i with the largest ( )NX ii

~  

among i=1,…, ρ. 
     The objective is to select a policy having the largest 
sample mean (i.e., the maximal average weighted profit) at a 
surety level higher than 100P* =95 percent that the correct 
selection has been made, provided that d* = 5.  For each 
scenario an MMRCPSP instance with any MAX-J=20 to 50 
with Fi =2.5 and I =5 is generated.  Concurrently, the value of 
each ECi (early completion incentive) is set at 5, and the LCi 

(late completion penalty) is set at 4 for each project i.  For 
each problem instance, first set n0 =30; then, compute τ =3.92 
(see [18, p. 130]).  Thus, the results from the first-sampling, 

( )30)1(X i  and ( )302Si , can be obtained. When given the 

respective values of ( )302Si , τ, and d*, compute the total 

sample size Ni for each policy; then, make Ni - 30 additional 
replications for each policy.  For example, in a combination of 
MINLFT and STOCOM-M, the total sample size is 288; hence, 
258 replications are needed to generate in the second stage (see 
Table 1).  Once Ni - 30 replications are produced, the 
second-stage sample mean ( )30)2( −NX ii  can be obtained. 

Finally, calculate the values of Wi1 and Wi2 for each policy and 
the weighted sample mean ( )NX ii

~ .  

     Here an example of a two-stage sampling method for 
MAX-J=30 is given in Table 1.  The overall results from the 
weighted sample means in all the scenarios for MAX-J=20 to 
50 with Fi =2.5 and I =5 are shown in Tables 2-5. 
     The best policy which obtains the largest weighted 
sample means (the bold numerals in Tables 2-5) of all scenarios 
for MAX-J=20 to 50 is summarized in Table 6.  On this 
Table, among the activity priority rules, MINSL is the best; 
whereas, MINDM and MINRDM are superior to other mode 
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priority rules.  Hence, for each scenario the corresponding  
priority rules are selected for use in a parallel scheduling 
algorithm to find the maximal average weighted profit. 
 

3. Comparison of Parallel Heuristic Scheduling and 
Proposed Genetic Algorithms 

     In a GA, how to determine the values of various 
parameters such as population size, crossover rate, and 

Table 1. Example of two-stage sampling method (MAX-J=30, θ =4.0, DD=LCPL) 

Policy i )30()1(
X i  )30(2S i  Ni )30()1( −NX ii

Wi1 Wi2 X i
~  

A.P.R M.P.R        
RAN-A RAN-M -402.1 4504.5 43 -405.7 0.73 0.27 -402.5 
 MINDM -347.2 5354.6 51 -331.7 0.63 0.37 -341.5 
 STOCOM-M -396.4 3210.0 31 -540.0 0.98 0.02 -399.1 
 MAXDM -536.4 7926.4 76 -502.7 0.41 0.59 -516.7 
 MINRDM -202.2 4139.1 39 -151.3 0.83 0.17 -193.4 
STOCOM-A RAN-M -369.6 4525.1 43 -396.0 0.74 0.26 -376.3 
 MINDM -336.0 4404.4 42 -348.0 0.75 0.25 -339.0 
 STOCOM-M -383.0 6475.2 62 -384.0 0.51 0.49 -383.5 
 MAXDM -507.0 9721.9 93 -518.9 0.35 0.65 -514.7 
 MINRDM -202.2 2726.4 31 -234.0 1.04 -0.04 -200.8 
MINLFT RAN-M -473.0 15321.3 147 -460.8 0.22 0.78 -463.5 
 MINDM -474.0 0.0 31 -474.0 1.00 0.00 -474.0 
 STOCOM-M -435.0 30060.6 288 -454.3 0.12 0.88 -452.0 
 MAXDM -684.0 0.0 31 -684.0 1.00 0.00 -684.0 
 MINRDM -114.0 0.0 31 -114.0 1.00 0.00 -114.0 
MINSL RAN-M 74.0 1569.9 31 96.0 1.14 -0.14 70.7 
 MINDM 168.0 0.0 31 168.0 1.00 0.00 168.0 
 STOCOM-M 73.2 1572.6 31 96.0 1.15 -0.15 69.8 
 MAXDM -18.0 0.0 31 -18.0 1.00 0.00 -18.0 
 MINRDM 96.0 0.0 31 96.0 1.00 0.00 96.0 

Note: A.P.R denotes activity priority rule; M.P.R., mode priority rule   

 
Table 2. Weighted sample means of project duration (MAX-J=20) 

Mode priority rule 
Activity priority rule 

RAN-M MINDM STOCOM-M MAXDM MINDRM 
θ = 2.0, DD=LCPL 

RAN-A -789.9 -743.9 -692.9 -1026.3 -481.0 
STOCOM-A -589.1 -546.8 -525.5 -821.6 -293.4 

MINLFT -1080.6 -996.0 -952.0 -1530.0 -756.0 
MINSL -36.8 12.0 11.1 -84.0 0.0 

θ = 2.0, DD=3LCPL 
RAN-A -44.9 -47.4 69.9 -271.1 469.3 

STOCOM-A 907.1 964.2 946.7 694.1 1171.1 
MINLFT -412.2 -282.0 -331.9 -780.0 -60.0 
MINSL 1392.1 1428.0 1389.5 1248.0 1416.0 

θ = 4.0, DD=LCPL 
RAN-A -153.0 -124.6 -153.4 -259.9 -48.1 

STOCOM-A -168.3 -153.3 -165.6 -252.0 -43.0 
MINLFT -337.5 -300.0 -344.8 -552.0 -120.0 
MINSL 28.8 108.0 60.8 -48.0 108.0 

θ = 4.0, DD=3LCPL 
RAN-A 1107.7 1138.7 1150.4 887.2 1346.6 

STOCOM-A 1352.2 1364.0 1414.7 1243.9 1459.6 
MINLFT 676.5 732.0 815.9 348.0 1224.0 
MINSL 1465.8 1524.0 1509.9 1320.0 1524.0 
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mutation rate is a very complicated problem.  A good 
combination of GA parameters for producing a stable and 
robust result depends on an excellent design for the experiment; 
however, such a combination is beyond the scope of this study. 
     Once an MMRCMPSP instance has been generated, first 

solve it by the PSA, then by the GA, in which stage 40 
chromosomes (i.e., schedules) are initialized as the first 
generation.  Then find the maximal solution through 100 
generations.  For simplicity, a new generation with P1 =25, P2 
=15, P3 =5 and P4=5 is set (Here, these values of the  

Table 3. Weighted sample means of project duration (MAX-J=30) 

Mode priority rule Activity priority rule 
RAN-M MINDM STOCOM-M MAXDM MINDRM 

θ = 2.0, DD=LCPL 
RAN-A -1406.7 -1360.7 -1304.3 -1665.0 -976.9 

STOCOM-A -1451.3 -1296.1 -1286.8 -1732.8 -950.2 
MINLFT -1553.1 -1248.0 -1301.9 -2112.0 -1092.0 
MINSL -64.4 -24.0 -12.6 54.0 48.0 

θ = 2.0, DD=3LCPL 
RAN-A -426.8 -314.3 -348.9 -708.2 126.6 

STOCOM-A -106.1 -37.7 33.1 -370.9 470.5 
MINLFT -101.1 -12.0 -17.9 -342.0 324.0 
MINSL 1883.3 1920.0 1886.7 1860.0 2016.0 

θ = 4.0, DD=LCPL 
RAN-A -402.5 -341.5 -399.1 -516.7 -193.4 

STOCOM-A -376.3 -339.0 -383.5 -514.7 -200.8 
MINLFT -463.5 -474.0 -452.0 -684.0 -114.0 
MINSL 70.7 168.0 69.8 -18.0 96.0 

θ = 4.0, DD=3LCPL 
RAN-A 1191.9 1283.4 1294.3 930.1 1585.1 

STOCOM-A 1437.1 1552.2 1559.3 1186.8 1706.4 
MINLFT 1399.1 1644.0 1498.0 1392.0 1656.0 
MINSL 2039.0 2136.0 2118.3 1932.0 2064.0 

 
Table 4. Weighted sample means of project duration (MAX-J=40) 

Mode priority rule Activity priority rule 
RAN-M MINDM STOCOM-M MAXDM MINDRM 

θ = 2.0, DD=LCPL 
RAN-A -2079.7 -1873.2 -1851.1 -2552.3 -1312.7 

STOCOM-A -2058.1 -1940.6 1886.2 2646.9 -1335.1 
MINLFT -967.4 -862.0 -826.7 -1368.0 -690.0 
MINSL -52.7 60.0 25.0 -90.0 -42.0 

θ = 2.0, DD=3LCPL 
RAN-A -927.8 -720.1 -699.1 -1400.2 -158.1 

STOCOM-A -699.7 -493.6 -515.2 -1089.8 65.3 
MINLFT -495.6 -234.0 -216.8 -1044.0 -18.0 
MINSL 2211.3 2364.0 2341.3 2124.0 2220.0 

θ = 4.0, DD=LCPL 
RAN-A -627.3 -527.6 -619.8 -858.4 -335.4 

STOCOM-A -603.1 -536.1 -601.2 -883.8 -345.9 
MINLFT -240.7 -132.0 -236.4 -492.0 -306.0 
MINSL 92.4 240.0 95.8 -60.0 36.0 

θ = 4.0, DD=3LCPL 
RAN-A 1065.1 1252.6 1257.8 567.2 1622.5 

STOCOM-A 1299.8 1454.7 1471.6 891.5 1819.8 
MINLFT 1132.9 1500.0 1367.4 624.0 1572.0 
MINSL 2393.2 2544.0 2507.8 2184.0 2340.0 
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parameters are finally determined on the basis of some 
simulation effort.  Even though the solutions obtained by 
using these values in the GA are not optimal one, they will be 
quasi-optimal).  For convenience, the solutions obtained by 
the PSA (described in section 3) are denoted as SPSA.  In the 
following subsection, the SPSA are compared with the SGA 
(solutions derived by the proposed genetic algorithm).  To 
examine and evaluate the performance the proposed GA, a 
measure is defined as 
 
φ = (SGA - SPSA) / SPSA * 100% (18) 
 
     Here different combinations of resource-availability 
levels (θ =2.0, 4.0) and two different due-date tight levels 
(DD=LCPL, DD=3LCPL) are considered.  The early 
completion incentive value is assumed to be 4; the late 

completion penalty is 5.  For each combination, given 
MAX-J=20, 30 MMRCPSP instances are generated.  Each 
instance is solved by the proposed parallel scheduling and the 
proposed GA, the φ value being calculated.  Classify these 30 
φ values into three classes (i.e., φ > 10%, 10% > φ > 0 %, φ < 
0) to evaluate the performance of the GA.  The final results 
from a different MAX-J = 20 to 50 are summarized in Table 7.  
     It can be observed from Table 7 that most of the 
generated problem instances solved by the GA are better than 
those solved by the PSA.  Moreover, many φ are greater than 
10% in the majority of cases, except in the combination of θ = 
4.0, DD = 3LCPL.  From the computational results based on 
the different experimental scenarios and generated problem 
instances, the results obtained by the GA are better than those 
obtained by the PSA in most cases.  Furthermore, as smaller 
value of θ  is set (i.e., less resource availability can be 

Table 5. Weighted sample means of project duration (MAX-J=50) 

Mode priority rule Activity priority rule 
RAN-M MINDM STOCOM-M MAXDM MINDRM 

θ = 2.0, DD=LCPL 
RAN-A -2586.5 -2314.1 -2294.6 -3242.4 -1687.8 

STOCOM-A -2623.8 -2347.9 -2367.7 -3361.2 -1722.6 
MINLFT -1139.2 -1044.0 -1027.3 -1686.0 -378.0 
MINSL -54.6 36.0 35.3 -108.0 72.0 

θ = 2.0, DD=3LCPL 
RAN-A -1062.5 -790.1 -770.6 -1718.4 -108.7 

STOCOM-A -1135.1 -830.9 -838.6 -1875.5 -267.3 
MINLFT 2537.5 2556.0 2584.4 2436.0 2880.0 
MINSL 2939.7 3084.0 3029.9 2832.0 3120.0 

θ = 4.0, DD=LCPL 
RAN-A -770.5 -663.3 -638.6 -1073.0 -422.1 

STOCOM-A -803.2 -643.5 -637.9 -1075.2 -415.7 
MINLFT -433.2 -324.0 -360.6 -576.0 -546.0 
MINSL 118.4 312.0 244.2 0.0 156.0 

θ = 4.0, DD=3LCPL 
RAN-A 1475.7 1746.0 1738.4 907.1 2215.9 

STOCOM-A 1336.2 1691.2 1652.2 731.3 2051.2 
MINLFT 3011.5 3180.0 3123.0 2952.0 3156.0 
MINSL 3162.7 3360.0 3303.5 3048.0 3204.0 

 
Table 6. Best activity- and mode- priority rules for each problem instance 

 θ = 2.0 θ = 4.0 

DD = 3LCPL DD=LCPL DD = 3LCPL DD=LCPL MAX-J 

A B A B A B A B 

20 MINSL MINDM MINSL MINDM MINSL MINDM MINSL MINDM 
30 MINSL MINRDM MINSL MINDM MINSL MINDM MINSL MINDM 
40 MINSL MINDM MINSL MINDM MINSL MINDM MINSL MINDM 
50 MINSL MINRDM MINSL MINRDM MINSL MINDM MINSL MINDM 

Note: A represents the probably-best activity priority rule 
B represents the probably-best mode priority rule 
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obtained) and due date of project completion is set tighter; the 
proposed GA appears to outperform PSA more obviously.  
Therefore, a simple design of GA can play a role of solving a 
MMRCMPSP in relatively effective manner.  
     Considering the computation times of these two 
algorithms, the PSA is certainly superior to the GA owing to 
the number of their computational iterations.  Under the same 
problem instance, constructing only one schedule is needed in 
the PSA, whereas, generating 30 schedules and performing 100 
generations are needed in the GA.  In case of θ = 2.0, 
DD=LCPL, MAX-J = 20, the average times of the PSA and the 
GA are 0.0549 (0.139) and 22.833 (52.410) (seconds), 
respectively.  The values in the parentheses are the case of 
MAX-J = 50.  Therefore, more efficient and robust GA is left 
for future study.  
 

VI. CONCLUSION 
     In this study, two heuristic algorithms have been 
developed to solve a multi-mode resource-constrained 
multi-project scheduling problem (MMRCMPSP).  The first is 
a parallel scheduling algorithm developed to find an 
approximately optimal solution; the second, a genetic 
algorithm.  The proposed genetic algorithm is based on a 
direct representation of candidate solutions and new genetic 
operators.  The MMRCMPSP itself has been used as a 
chromosome, and augmented recombination operators have 
been designed to work on the non-standard representation.  
All relevant domain information has been contained in the 
problem representation with the intention being that the genetic 
algorithm can operate on the entire search space. 
     The objective of the parallel scheduling algorithm has 
been used as baseline to validate the effectiveness and 
performance of the second algorithm.  As a baseline, 

Identification of the best combination of activity- and mode- 
priority rules which can find most likely solution for a certain 
objective is needed.  Due to certain priority rules with 
probabilistic factors, a two-stage sampling method has been 
introduced to ensure that more reliable computational results 
are obtained.  Finally, a problem-instance generator has been 
devised to generate a certain number of test problems.  A 
genetic algorithm proposed to search a better solution of 
MMRCMPSP is one of the objectives of the paper, since so far 
there seems no good heuristic algorithm in public literature. 
Hence, a simple genetic algorithm is initialized; more efficient 
and robust GA is left for future study.  From the 
computational results, the effectiveness and performance of the 
proposed genetic algorithm is validated. 
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