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1. Groups

e Group: Gisa Set
Rule: an operation &) defined on G, for which

abeG a®b=ceG

We say that G is closed under the operation &)




EX2.1.1: @ the addition of modulo 3
« G=1{0,1,2}

* 1dentity element 0

* Gisclosed under @

o | = | O O

S| N =] =

— | O NN




Definition:

Let G be a set with an operation & . The set G is
called a group under this operation if the
following conditions hold

1. (a®b)®c=a®(b®c) (associative)
2. Let e 1s an 1dentity element of G, then
a®¥a'=a'®a=e . ake=eXa=a

'

where @' 1s called an inverse of a

3. A group G is said to be commutative if for a
and b in G, such that

a®b=b®a



EX:2.1.2 G={1,2,3} over & (the multiplication of

modulo 4)
|1 [2]3
1 1 2 | 3
21 2 10| 2
313 |21

Since 1t 1s not closed, G 1is not a group



EX2.1.3: G=1{0,1,2,3} with ® (the multiplication
modulo 4), 1 is an identity element in G

10123
0]0]0]0|O0
110 (1123
21012102
3101321

Smmce 0Q A # 1, (Ae@G), G 1s not a group



EX2.1.4: G={1,2,3,4} with ® (the multiplication
of modulo 5)

| 11234
11234
21214113
313 ]1]4/|2
414|321




EX2.1.5: G=1{0,1,2,3,4} with @ (the addition of

modulo 5)

Dl0|1]2]3]4
001234
111(2[3]4]0
212131401
313[14(0(1]2
4141011123

Inverse element
1 +— 4
2 3
0 «—0



EX2.1.6:
real number addition: Associative(A), Commutative (C)
real number subtraction: A(not), C(not)

real number multiplication: A,C
real number division: A(not),C(not)
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EX2.1.7: G={1,2,3,4} over ® (multiplication of
modulo 5)

211121314 iln\EG 1element
1111234 7 e 3
212141113 4 — 4
31311142 i
alalslo]q 3®Z:3®4(m0d5) =2

4®%:4®3(m0d5) =2

EX2.1.8: N={0,1,2,..., 00} 1s not a group under the integer
number addition (e.g. can not find an inverse number 1iln N).



2. Fields

Definition:

« Let F be a set of eclements on which two
operations are defined , and F is called a field if
it has the following properties

(1) F is a commutative group under “ ®

The 1dentity element with respect to this
operation 1s called the zero element 0. The
additive mverse of an element a 1s denoted by -
a’?
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(2)F\{0} = F-{0} (without the zero element )

The set of nonzero elements in F forms a
commutative group under the ® operation, and
the 1dentity element 1s called the unit element
denoted by 1. The multiplicative Inverse
of an element ae F-{0} iscall al.

(3)For a, b and ¢ in F, the distribution law holds,
1.€.,

(Aa®h)®c=a®cPdb&c
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EX22.1: F={0,1,...,P-1}, P 1s prime
(1)F1s a field of P elements under modulo P

addition and modulo P multiplication. For
example, P =3, and F = {0,1,2}

@ 0| 1 | 2

O 0 1 |2 D12
1111210 L1112
21210 |1 2121




« Characteristic: the smallest positive integer A
A
Y @l=1+1+1-+1=0
! 2
* Order:(1)the number of elements in a finite field

for which

(2)the minimum positive number N such
that

a'=a®a---®a=1

N is the order of the element a
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 Consider the binary set {0,1}.

* Define two binary operations, called addition “+”
and multiplication “-” on {0,1} as follows :

0+0=0 0-0=0
0+1=1 0-1=0
1+0=1 1-0=0

1-1=1

16



*In a finite field F = {0,1,..., g-1}, a nonzero
clement a € F i1s said to be primitive 1f the order of

aisg-l1, 1e. _
q aq 1 :1

*Ex2.2.2: F=1{0,1,2,3.4},

20=1, 21=2  22=4, 23=3, 2%=1, since the
order of 2 1s 4, therefore 2 1s a primitive element in
F. Similarly, 3 1s the other primitive element.

+Ex2.2.3: F={0.1,....6},

20=1,21=222=4 23 =1, so that the order of 2 is

3 and 2 1s not a primitive element in F.
17



 These two operations are commonly called
modulo-2  addition and  multiplication
respectively. The modulo-2 addition can be
implemented with an X-OR gate and the
modulo-2 multiplication can be implemented
with an AND gate

 The set {0,1} together with modulo-2 addition

and multiplication is called a binary field ,
denoted GF(2).

* The binary field GF(2) plays an important role
binary coding.
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3. Vector Space over GF(2)

* A binary n-tuple is an ordered sequence, (8;,8,, "+, &)
a, =0 or 1 with components from GF(2).

There are 2" distinct binary n-tuples.

* Define an addition operation for any two binary n-
tuples as follows :

(alﬂu"an)_l_(bl?”"bn):(al +b19”.9an _I_bn)

where a. +b, 1<i<n ,1s carried out in modulo-
2 addition.

* The addition of two binary n-tuple results in a third
binary n-tuple
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» Define a scalar multiplication between an element
c in GF(2) and a binary n-tuple (a,,a,,...,a8,) as
follows:

c-(a,a,,..,a)=(c-a,c-a,,..,C-a)

where C-a, 1s carried out in modulo-2 multiplication.

* The scalar multiplication also results 1n a binary n-
tuple.

» The set V, together with the addition defined for
any two binary n-tuple in V, and the scalar
multiplication defined between an element in GF(2)
and a binary n-tuple in V,, 1s called a vector space
over GF(2).

20



* The elements 1n V are called vectors.

* Note that V, contains the all-zero binary n-tuple
0,0, ...,0)and

(ala )+(b19b29 ﬂbn):(oaoa”'ao)
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« Ex 2.3.1: Let n =4. The vector space V, consists

of the following 16 vectors:

(0000),
(0010),
(0100),
(0110),

(:

1000),
1010),
1100),

(
(:
(:

1110),

(0001
(0011
(0101
(0111
1001
011
101

(]

(
(:
(:

111

~ e e Y e N N
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According to the rule for vector addition,

(0101)+(1110)=(0+1,1+1,0+1,1+0)
=(1011)

According to the rule for scalar multiplication,

1-(1011)=(1-1,1-0,1-1,1-1)
=(1011)

0-(1011)=(0-1,0-0,0-1,0-1)
=(0000)

23



» A subset S of V, is called a subspace of V, if (1)
the all-zero vector 1s in S and (2) the sum of two
vectors 1n S 1s also a vector 1n S.

« Ex 2.3.2: The following set of vector,
(0000) (0101)

(1010) (1111)
forms a subspace of the vector space V,

24



4. Linear Combination

* A linear combination of kK vectors,V,,V,,--,V,, in
V_1s avector of the form

u=cVv, +c\V, +...+C\V,

where C. € GF(2) and 1s called the coefficients
of V.

» There are 2% such linear combinations of V,,V,,---,V
2 k

These 2K linear combinations give 2K vectors in
V_ which form a subspace of V, .

* A set of vectors,V,,v,,---,V, _, 1n V 1s said to be
linearly mdependent if

25



unless all ¢, , C,, ., C, are the zero elements in
GF(2).

cV,+CV,+..+CV, =0

« The subspace formed by the 2% linear
combinations of K linearly independent vectors
in V, is called a k-dimensional subspace of V,,.
There k vectors are said to span a k-dimensional
subspace of V.
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Ex2.4.1: B
vV, = (190)
V, =1<_
V2 - (Oal)
v, = (1,1)
Vi = (1,0) v, = (1,0)
( ){_2 = (0 1)} ( ){\73 = (1,1)}
v, =(0,1) .
( ){\73 - (1,1)} . =ae +a,e, aq,a,e {O,]}

There are two independent vectors.
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Ex2.4.2: v, =(0,0,0,0)
\7 — 110’110
S — % _1 ( ) 3
V2 — (011 10 ;1)
\\73 — (1 11 11 11) )

Since there are two independent vectors, the
dimension of S 1s 2, 1.e. kK= 2.
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5. Dual Space

 Inner Product : The inner product of two vectors,
a=(a,a,...,a,)andb =(by,b,,...,Db,), 1s
defined as follows:

ab=a,b+a-b,+ --a-b
where @, - b. and a,- b.+a.,, - b.,, are caried out in
modulo-2 multiplication and addition .
« Ex2.5.1:
(11011)-(10111)
=1-1+1-0+0-1+1-1+1-1
=1+0+0+1+1
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« Two vectors, a and b , are said to be orthogonal if

a-b=0
e Ex25.2:
(10110)-(11011)
=1-1+0-1+1-0+1-1+0-1
=14+0+0+1+0
=()

30



* Let S be a k-dimensional subspace of V.. Let S,
be the subset of vectors in V,, for any @ in S and
any b in S, such that

ab =0
S,1s called the dual space (or null space ) of S.

« The dimension of S;is n — k, where K is the
dimension of S.

31



* S, 1s called the dual space (null space) of S

-
<
I

—

32



* Ex 2.5.3 : Consider Vg, the vector space of all 5-
tuples over GF(2),

S S,
(00000)  (00000)
(11100) (10101)
(01010) (01110)
(10001) (11011)
(10110)

(01101)
(11011)
(00111)

where the dimension of S 1s 3, and the dimension of

S418 2.
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HW #1

1. Construct the prime field GF(5) with modulo-5
addition and multiplication. Find all the
primitive elements and determine the order of
the other elements.

2. Construct the vector space of all 3-tuples over
GF(5). Form a two-dimensional subspace and
its dual space.

34



6. Binary Irreducible Polynomials

* A polynomial with coefficients from the binary
field GF(2) is called a binary polynomial.

« For example, 1+X2, 1+X+X3, 1+X3+X° are binary
polynomials.

A binary polynomials P(X) of degree m is said to
be irreducible if it is not divisible by any binary
polynomial of degree less then m and greater then
Zero.

* For example , I +X+X3, 1+X+X> and 1+X3+X°are
irreducible polynomials .
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 For any positive integer m =1 | there exists at
least one irreducible polynomial of degree m.

* An 1rreducible polynomial P(X) of degree m is
said to be primitive if the smallest positive
integer N for which

P(X) divides X" +1,and n=2"—1.

* For any positive integer m , there exists a
primitive polynomial of degree m .

 Table 2-1 gives a list of primitive polynomial .
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Ex2.6.1: g(X)= X’ +1(irreducible or reducible
polynomial ?)

X+1| 9(X) — .. 9(X) is reducible

gX)= X"+ X +1
P(X)=X, or X +1

P(X)1g(X)
5. 0(X) is irreducible

Ex2.6.2:
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Table 2-1: A list of primitive polynomial

1 1

3 l+ X+ X 14 14X +X°04 X104 x4
| R . & 15 1+ X+X%°

5 L+ XP+ X 16 1+X+X3+ X124 X
6 1+X+X6 17 1+X3+ X7

T 1L+XP+X 18 14+ X7+ X8

8§ 14+X24+X34X44+X% 19 14X +X24+X54X00
g LX4X 20 14X+ X0

10 14X+ X0 9] 14 X2+ X2

11 1+ X%+ X1 29 14X+ X2

2 14X+ 204X% 8 14X XP

13 14+X+X34 X4 X0 2 14X+ 20 £ X7+ XY
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/. Construction of Galois Field GF(2™M)

« A field is a set of elements ( or symbols ) in
which we can do addition, subtraction,
multiplication, and division without leaving the
set. Addition and multiplication satisfy the
commutative, associative and distributive
laws.

39



* The system of real numbers 1s a field, called the
real-number field.

* The system of complex numbers is also a field
known as the complex number field.

e The complex number field is actually constructed
from the real-number field by requiring the

symbol.
| =+/—1,

as a root of the Irreducible ( over the real
number field ) polynomial X?+1, i.e.,

(V=1 P+1 =0

40



* Every complex number 1s of the form,
a + bi
where a and b are real numbers.

* The complex-number field contains the real-
number field as a sub-field.

* The complex-number field is an extension field
of the real-number field.

e The complex-umber and real-number fields
have infinite elements.

41



Finite Field

* It 1s possible to construct fields with finite number
of elements. Such fields are called finite fields.

e Finite fields are also known as Galois fields after
their discoverer.

 For any positive integer m>1, there exists a Galois
field of 2™ elements, denoted GF(2™M).

* The construction of GF(2™) 1s very much the
same as the construction of the complex-number
field from the real-number field.
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* We begin with a primitive ( 1rreducible )
polynomial P(X) of degree m with coefticients
from the binary field GF(2).

* Since P(X) has degree m, it must have roots
somewhere.

* Let « be the root of P(X) ..e.,P(ax)=0

(Just as we let the symbol i =+-1 as the root of
the irreducible polynomial X?+1 over the real-
number field.)

43



 Starting from GF(2) = {0,1} and « , we define a

multiplication “” to introduce a sequence of
powers of a as follows:

00=0
O¢el=10=0
lel=1

Qe v=a°0=0
leag=a-° 1=«
ar*=a e a
ad=acaca
diig.g..g o
I times 44




66.99

* From the definition of multiplication “*”,we see that
0 a'=a'+0=0
le a'=a'e 1= &
CZ/i o CZ/j — d,i+j.
* Now we have the following set of elements,
which is closed under multiplication “*”.
Since « is aroot of P(X)which divides X' +1,
a must also be a root of X2 ™' +1 .

e Hence

2™ -1

a +1=0

45



* This implies that
a2m—1 _ 1

* As aresult, F 1s finite and consists of following
elements ,

F={0,1,a,0®, ,a "}
* Let & = 1, and multiplication is carried out as
follows :
For0<i ,j <21, ded=al=o
where I is the remainder resulting from dividing |
+ ] by 2M-1. 1.,

r=i+ jmod (2" —1) i



* Note that |
al .a2m—1—| :a2m—l :1
» Hence «” "' is called the multiplicative
Inverse of o and vise versa.
* We can write
a2m—1—i :a2m—1 .a—i :a—i
* We use o' to denote the multiplicative inverse
of .
* The element “1” 1s called the multiplicative
identity ( or the unit element ).
* Next we define division as follows:
ad+-d=dal=a"l
* Now we define an addition “+” on F.



*For0<i<2m-2  we divide X' by P(X). This
results 1n

X'=a(X)P(X)+b(X)

where b(X) 1is the remainder and
b(X)=b, +b X +---+b__ X™"

e Replacing X by o, we have
o' =a(a)P(a)+b(a)
=a(a)-0+b(a)

— m—1
=b,+b,a+---+b &

48



* This says that each nonzero element in F can be
expressed as a polynomial of a with degree m — 1
or less.

* Of course, 0 can be expressed as a zero polynomial.
* Suppose
od=b,+ba+..+b, o
d=c,+ca+..+c am!

* We define addition “ + * as follows :
a+a=(b,+tc,) + (b,+¢c,) a +... +(b,_,+C. ) a™!
= oK
where b:+C; 1s carried out with modulo 2 addition.

49



eClearly &/ + & =0 .
e o is its own additive inverse .
e let -o denote the additive inverse of o . Then
o=
» Subtraction is defined as follows :
ad-d=d+ (-d)y=d + o.
« Hence subtraction is the same as addition .

F={0,1,a,d, .., g* 2 together with the
multiplication and addition defined above form a
field of 2™ elements

50



* Note that the correspondence
b,+b,at...+b_ ™! and its vector form
(by, b, ,...,0.. ;) is one to one.

* Every element in GF(2™M ) can be represented 1n
three forms: (1) power, (2) polynomial, and (3)
vector forms.

e It 1s easier to perform multiplication 1n power form.

e It 1s easier to carry out addition in polynomial or
vector forms

51



Ex 2.7.1: Let m = 4. The polynomial
P(X)=X*+X+1
1s a binary primitive polynomial of degree 4.
« Let abe aroot of P(X) .
 Then, P(a)=a"+a+1=0

- Using the fact that a*+ o*=0and o+ 0 = o,
we have

ot =a+ 1.

- Now we consider the set {0, 1, a, o, &, o,
&B,c8,d, 08,0, al, !, a?,ald, a4,

52



« Note that a!° =1.

- Using the identity o = a + 1, every power o
can be expressed as a polynomial of a with
degree 3 or less as shown in Table 2-2.

- For example,
X=a* =a'(at+tl)=a+q,
d=a*’ =a*'(a+a)=o+a?
ad=a*d =a'(dP+at)=d"+ &,
=atl+ad =c+ta+tl,

53



Table 2-2 The elements of GF(24) generated by
P(X) = 1+ X+X*

Power Polyvnomaal 4-"Tuple
representation representation representation
0 0 (00 00)
1 1 (1000)
x v (01 00)
o o (00 10)
o o (000 1)
at 1 + « (1 100)
o a ol (011 0)
o ot a” (001 1)
a 1 + « + o (1 101)
o 1 + o (1010)
a fat + o (01 01)
at! 1 + a + «a? (1110)
atl a + ot 4 o (011 1)
= 1 + aa + a2 + o (L 111)
at? 1 + a* 4+ o (101 1)
ol 1 + o (1001)




 Addition 1s done in polynomial form.
e Let
od=a,+ta,atacnt+ac
od=b,+b,a+b,c?+ b
* Then,
ad+d=(a,ta,at+a,?+a;d)+ (b, +bat
b,e? + by07)
=(aythby)t(atb)at(a,th,) e+
(a;+by)e’
= o (from Table 2-2).

where 1t 1s carried out with modulo-2 addition.
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* For example,

o+ ol = (at)+H(1+a*+d) = 1+atadd = o’

al'+ @ =(atP+ad)tad = atra?= o

a + o = (1+tated)+(1+ata?) =0
e Since o + & =0, o is its own additive inverse,

i.e.,
a=-o
* Hence
d-d=d+(-d)=d+ d

 Subtraction 1s 1dentical to addition.

» This complete our construction of Galois field
GF(2%) .
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* We say that GF(2%) is generated by the primitive
polynomial P(X)= X*+ X +1.
 Note that there 1s a one-to-one correspondence
between the polynomial ,
a,+a,ata,rt+aa’,
and the 4-tuple,
(8y,8;,8,,8;,3,)

« Hence every element in GF(24) power form, the

polynomial form and the vector form, as shown
in Table 2-2.
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e The primitive polynomial P(X)= X"+ X +1 has
4 roots which are all in GF(24). They are

a, @, a¥=d, o =8,
* For example,
P(o)= (a4)* + () + 1
— 6+ A+ 1
— e 5+ oA +1
=ataoat+1
= +a+1=0.
« o, o and of are called conjugate roots of a.
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* We can easily show that
PX)=( X+ a) X+a2)(X+a)(X+aP)
= X4+ X+1
Remark

* Galois fields are important in the study of a
special class of block codes, called cyclic codes.
In particular, they are used for constructing the
well known random error correcting BCH and
Reed-Solomon code.

« GF(2M) 1s also called the extension field of GF(2).

* Every Galois field of 2™ elements 1s generated by
a binary primitive polynomial of degree m.
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7. Primitive Elements

* Consider the Galois field GF(2™) generated by the
primitive polynomial
P(X)=p,+ p,X+ ... + Py XM+ XM
* The element « (a root of P(X) ) whose powers

generate all the nonzero elements GF(2™M) 1s called
a primitive element of GF(2™).

* In fact, any element £ in GF(2™) whose powers
generate all the nonzero elements of GF(2M) 1s a
primitive element.
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Ex 2.7.2 : Consider the Galois field GF(24) given in
Table 2-2 . The powers of o* are

fat ) = ‘ (a*)! = o {a-i}z = B
tatyd = ogbl - (e =l 4 (a?)S = 20 = o5
(at)t =23 =q9 (a¥)? =28 =o!3 (a®)8 =32 = o2
Sy E = 56 = B ()10 = o490 = 10 (a$)! 1 = 44 = 14
()12 = o%8 = o3 o L O 1 FRMEN (x?)14 = 56 = 1!

which o generates all the 15 nonzero elements of
GF(2%) . Thus o* is a primitive element, and «’ is

also a primitive element.
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Minimum Polynomials

Consider the Galois field GF(2™) generated by a

primitive polynomial P(X) of degree m.

Let £ be a nonzero element of GF(2™M).
- Consider the powers,

,820 ,821 1822 ,BZi

- Let e be the smallest nonnegative integer for

which g* = s
- The integer “e” is called the exponent of £.

- The powers, : o
BB BB

are distinct and called conjugates of £.
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 Consider the product,
KX) = (XEBOHB). ..(X+ B
=a,t+ a,X+...+a, X&1+X®
1s a polynomial of degree e.

* /X) 1s binary and irreducible over GF(2).

* /X) 1s called the minimal polynomial of the
clement S.

* /X) 1s the binary 1rreducible polynomial of
minimum degree which has £ as root.

 (X) has g, /7,..., £* as all its roots.
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Ex 2.7.3: Consider the field GF(2%) given in Table 2-2
e Let f= o
* We form the following power sequence:
B=0, P=05 [=a?2, B=oc*=d
Blo= A= 3= f3
* Since [ 2 = [, the exponent of f1is 4.

« Wesee that f=o’ , =0, /= ca'? and =’
are all distinct.

* The minimum polynomial of S= &2 is
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HX) = (X +BUX + B)X + B )X + )
=X+ )X +a)(X +a" )X +a”)
=X‘+(@+a’+a’ +a?)X’

+(a@ +a” +a” +a” +a't +a’H)X?
+(a”+a +a” +a’ )X +a

= X"+ X+ X*+ X +1

which is irreducible.

65



Table 2-3: Minimal polynomials of the elements in
GF(2%) generated by P(X)=X*+ X +1

Conjugate Roots | Minimal Polynomials

0 X

! X +1

a,a”,a’,a X*+ X +1
a’,a’,a’,a” X+ X+ X2+ X +1
a’,a’ X2+ X +1
0(7,0511,0(13,0514 X4__X3+1
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HW#2

1. Show that X° 4+ X’ +1 is irreducible over
GF(2). You may use the statement “gfdeconv”
in MATLAB to help.

2. Construct a table for GF(2°%) based on the
primitive polynomial P(X)= X’ + X +1
Display the power, polynomial, and vector
representations of each element. Determine
the order of each element.
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