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1.   Groups

• Group: G is a Set 
Rule: an operation      defined on G, for which

We say that G is closed under the operation 

⊗

G, ∈ba G∈=⊗ cba

⊗

a            b
c

G
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EX2.1.1:       the  addition of modulo 3
• G = {0, 1, 2}
• identity element 0
• G is closed under

0 1 2

0 0 1 2

1 1 2 0

2 2 0 1

⊕

⊕

⊕
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Definition: 
Let G be a set with an operation     . The set G is 
called a group under this operation if the 
following conditions hold
1.
2.  Let e is an identity element of G, then

where         is called an inverse of a
3.  A group G is said to be commutative if for a
and b in G, such that

)()( cbacba ⊗⊗=⊗⊗ (associative)

eaaaa =⊗=⊗ ''
'a

aaeea =⊗=⊗

abba ⊗=⊗

,

⊗
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EX:2.1.2  G = {1,2,3} over      (the multiplication  of 
modulo 4)

Since it is not closed,  G is not a group

1 2 3

1 1 2 3
2 2 0 2
3 3 2 1

⊗

⊗
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EX2.1.3: G = {0,1,2,3}  with         (the multiplication 
modulo 4), 1 is an identity element in G

0 1 2 3
0 0 0 0 0
1 0 1 2 3
2 0 2 0 2
3 0 3 2 1

⊗

⊗

Since 0     A ≠ 1,  (A∈G), G is not a group⊗
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EX2.1.4: G = {1,2,3,4} with       (the multiplication 
of modulo 5)

1 2 3 4

1 1 2 3 4

3 3 1 4 2
2 2 4 1 3

4 4 3 2 1

⊗

⊗
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EX2.1.5: G = {0,1,2,3,4} with      (the addition of 
modulo 5)

⊕

0 1 2 4
2 4

0
1
2
3

3
4
0
1

0
1
2
3
4

3
0 1 3

2 3 0

4 0 2

1 2 4

3 4 1

⊕ Inverse element

1 4

2 3

0        0
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EX2.1.6:
real number addition: Associative(A), Commutative (C) 
real number subtraction: A(not), C(not)
real number multiplication: A,C
real number division: A(not),C(not)
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EX2.1.7:  G = {1,2,3,4} over        (multiplication of   
modulo 5)

1 2 3 4
1 1 2 3 4
2 2 4 1 3
3 3 1 4 2
4 4 3 2 1

⊗

⊗

inverse element
1 1
2 3
4          4 

2mod5)(43
4
13 =⊗=⊗

2(mod5) 34
2
14 =⊗=⊗

EX2.1.8: N={0,1,2,…, ∞}  is not a group under the integer 
number addition (e.g. can not find an inverse number in N). 
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2.   Fields

Definition:
• Let F be a set of elements on which two 

operations  are defined , and F is called a field if 
it has the following  properties 

(1) F is a commutative group under “ ”
The identity element with respect to this 
operation is called the zero element 0. The 
additive inverse of an element a is denoted by “-
a”

⊕
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(2)F\{0} = F-{0} (without the zero element )
The set of nonzero elements in F forms a 
commutative group under the    operation, and 
the identity element  is called the unit element 
denoted by 1. The multiplicative inverse
of an element  a∈ F-{0}  is call  a-1.

(3)For a, b and c in F,  the distribution law holds, 
i.e., 

cbcacba ⊗⊕⊗=⊗⊕ )(

⊗
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EX 2.2.1: F = {0,1,…,P-1}, P is prime 
(1)F is  a  field  of  P elements under modulo P

addition and modulo P multiplication. For 
example, P = 3, and F = {0,1,2}

0 1 2
0 0 1 2
1 1 2 0
2 2 0 1

⊕
1 2

1 1 2
2 2 1

⊗
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• Characteristic: the smallest positive integer  λ
for which

• Order:(1)the number of elements in a finite field

(2)the minimum  positive number n such 
that 

n is the order of  the element a

∑ =+++=⊕
λ

λ1

011111 43421 L

1=⊗⊗= aaaan L
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• Consider the binary set  {0,1}. 
• Define two binary operations, called addition “+”

and multiplication “·” on {0,1} as follows :
0 + 0 = 0       0 · 0 = 0
0 + 1 = 1       0 · 1 = 0
1 + 0 = 1       1 · 0 = 0
1 + 1 = 0       1 · 1 = 1
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• In a finite field F = {0,1,…, q-1}, a nonzero 
element a ∈ F is said to be primitive if the order of  
a is q-1, i.e.

• Ex2.2.2:  F = {0,1,2,3,4},

20 = 1,  21 = 2,   22 = 4,   23 = 3,   24 = 1,  since the 
order of 2 is 4, therefore 2 is a primitive element in 
F. Similarly,  3 is the other primitive element.

• Ex2.2.3:  F = {0,1,…,6},

20 = 1, 21 = 2, 22 = 4, 23 = 1, so that the order of 2 is 
3 and 2 is not a primitive element in F.

11 =−qa
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• These two operations are commonly called   
modulo-2 addition and multiplication 
respectively. The modulo-2 addition can be 
implemented with an X-OR gate and the 
modulo-2 multiplication can be implemented 
with an AND gate

• The set {0,1} together with modulo-2 addition
and multiplication is called a binary field , 
denoted GF(2).   

• The binary field GF(2) plays an important role 
binary coding. 
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3.   Vector Space over GF(2)
• A binary n-tuple is an ordered sequence,        

with components from GF(2).  
• There are 2n distinct binary n-tuples.  
• Define an addition operation for any two binary n-

tuples as follows :

where                             , is carried out in modulo-
2 addition. 

• The addition of two binary n-tuple results in a third 
binary n-tuple

1 2( , , , )na a aL

0  or  1ia =

1 1 1 1( , , ) ( , , ) ( , , )n n n na a b b a b a b+ = + +L L L

, 1i ia b i n+ ≤ ≤
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• Define a scalar multiplication between an element 
c in GF(2) and a binary n-tuple (a1,a2,…,an) as 
follows:

where c·ai is carried out in modulo-2  multiplication.
• The scalar multiplication also results in a binary n-

tuple. 
• The set Vn together with the addition defined for 

any two binary n-tuple in Vn and the scalar 
multiplication defined between an element in GF(2) 
and a binary n-tuple in Vn is called a vector space
over GF(2). 

1 2 1 2( , ,..., ) ( , ,..., )n nc a a a c a c a c a⋅ = ⋅ ⋅ ⋅
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• The elements in Vn are called vectors.
• Note that Vn contains the all-zero binary n-tuple

(0, 0, …, 0) and

1 2 1 2( , , , ) ( , , , ) (0,0, ,0)n na a a b b b+ =L L L
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• Ex 2.3.1: Let n = 4. The vector space V4 consists 
of the following 16 vectors:

( 0 0 0 0 ) ,          ( 0 0 0 1 )
( 0 0 1 0 ) ,          ( 0 0 1 1 )
( 0 1 0 0 ) ,          ( 0 1 0 1 )
( 0 1 1 0 ) ,          ( 0 1 1 1 )
( 1 0 0 0 ) ,          ( 1 0 0 1 ) 
( 1 0 1 0 ) ,          ( 1 0 1 1 )
( 1 1 0 0 ) ,          ( 1 1 0 1 )
( 1 1 1 0 ) ,          ( 1 1 1 1 ) 
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According to the rule for vector addition, 
( 0 1 0 1 ) + ( 1 1 1 0 ) = ( 0 + 1 , 1 + 1, 0 + 1 , 1 + 0 )    

= ( 1 0 1 1 )  
According to the rule for scalar multiplication, 

1 · ( 1 0 1 1 ) = ( 1 · 1  , 1 · 0 , 1 · 1 , 1 · 1)
= ( 1 0 1 1 )

0 · ( 1 0 1 1 ) = ( 0 · 1 , 0 · 0 , 0 · 1 , 0 · 1 )
= ( 0 0 0 0 )
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• A subset S of Vn is called a subspace of Vn if  (1) 
the all-zero vector is in S and (2) the sum of  two 
vectors in S is also a vector in S.  

• Ex 2.3.2: The following set of vector, 
( 0 0 0 0 )     ( 0 1 0 1 )
( 1 0 1 0 )     ( 1 1 1 1 )

forms a subspace of the vector space V4
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4.   Linear Combination

• A linear combination of k vectors,                 , in  
Vn is  a vector of the form 

where  ci GF(2) and is called the coefficients 
of

• There are 2k such linear combinations of
These 2k linear combinations give 2k vectors in 
Vn which form a subspace of Vn . 

• A set of vectors,                  , in Vn is said to be  
linearly independent if

kkvcvcvcu +++= ...2211

∈
iv

kvvv ,,, 21 L

vv ,,, 21 L

kvvv ,,, 21 L

kv
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unless all c1 , c2 , . , ck are the zero elements in 
GF(2). 

• The subspace formed by the 2k linear 
combinations of k linearly independent vectors         
in Vn is called a k-dimensional subspace of Vn . 
There k vectors are said to span a k-dimensional 
subspace of Vn .

0...2211 ≠+++ kkvcvcvc
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Ex2.4.1:

⎪
⎪
⎭

⎪
⎪
⎬

⎫

⎪
⎪
⎩

⎪
⎪
⎨

⎧

=
=
=
=

=

)1,1(
)1,0(
)0,1(
)0,0(

3

2

1

0

2

v
v
v
v

V

⎭
⎬
⎫

⎩
⎨
⎧

=
=

)1,0(
)0,1(

)1(
2

1

v
v

⎭
⎬
⎫

⎩
⎨
⎧

=
=

)1,1(
)0,1(

)2(
3

1

v
v

2211 eaeavi += { }1,0, 21 ∈aa
⎭
⎬
⎫

⎩
⎨
⎧

=
=

)1,1(
)1,0(

)3(
3

2

v
v

There are two independent vectors.
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Ex2.4.2:

Since there are two independent vectors,   the 
dimension of S is 2, i.e. k = 2.

⎪
⎪
⎭

⎪
⎪
⎬

⎫

⎪
⎪
⎩

⎪
⎪
⎨

⎧

=
=
=
=

=

)1111(
)1010(
)0101(
)0000(

S

3

2

1

0

,,,v
,,,v

,,,v
,,,v
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• Inner Product : The inner product of two vectors,      
= ( a1 , a2 , … , an ) and = ( b1 , b2 , … , bn ), is 

defined as follows:
· = a1 · b1 + a2 · b2 + · · · an · bn

where ai · bi and ai · bi + ai+1 · bi+1 are caried out in 
modulo-2 multiplication and addition .

• Ex 2.5.1:
( 1 1 0 1 1 ) · ( 1 0 1 1 1 )
=1 ·1+1 ·0 + 0 ·1 + 1 ·1 + 1 ·1
=1 + 0 + 0 + 1 + 1
=1

b

b

5.   Dual Space

a

a
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• Two  vectors ,    and    , are said to be orthogonal if 

• Ex 2.5.2 :
( 1 0 1 1 0 ) · ( 1 1 0 1 1 )
=1 · 1 + 0 · 1 + 1 · 0 + 1 · 1 + 0 ·1
=1 + 0 + 0 + 1 + 0
=0

b

0=⋅ba

a



31

• Let S be a k-dimensional subspace of Vn. Let Sd
be the subset of vectors in Vn , for any in S and 
any       in Sd, such that

· =  0
Sd is called the dual space (or null space ) of S. 

• The dimension of Sd is n – k, where k is the 
dimension of S. 

b

ba

a
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• Sd is called the dual space (null space) of S

v

S

u

dS

0=⋅vu
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• Ex 2.5.3 : Consider V5, the vector space of all  5-
tuples over GF(2),

S               Sd
(00000)    (00000)
(11100)    (10101) 
(01010)    (01110)
(10001) (11011)
(10110)
(01101)
(11011) 
(00111)

where  the dimension of S is 3, and the dimension of 
Sd is 2. 
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HW #1
1. Construct the prime field GF(5) with modulo-5 

addition and multiplication. Find all the 
primitive elements and determine the order of 
the other elements.

2. Construct the vector space of  all 3-tuples over 
GF(5). Form a two-dimensional subspace and 
its dual space.



• A polynomial with coefficients from the binary 
field   GF(2) is called a binary polynomial. 

• For example, 1+X2 , 1+X+X3 , 1+X3+X5 are binary 
polynomials. 

• A binary polynomials            of degree m is said to 
be irreducible if it is not divisible by any binary 
polynomial of degree less then m and greater then 
zero. 

• For example , 1+X+X3 , 1+X+X5 and 1+X3+X5 are 
irreducible polynomials . 

)(XP

6. Binary Irreducible Polynomials

35
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• For any positive integer             , there exists at 
least one irreducible polynomial of degree m. 

• An irreducible polynomial             of degree m is 
said to be primitive if the smallest positive 
integer n for which

divides Xn +1, and  n = 2m – 1. 
• For any positive integer m , there exists a 

primitive polynomial of degree m . 
• Table 2-1 gives a list of primitive polynomial . 

1≥m

)(XP

)(XP



37

Ex2.6.1:  (irreducible or reducible 
polynomial ?)

X+1   is reducible 

Ex2.6.2:

is irreducible           

1or   )(
1(X) 2

+=
++=

XX,XP
XXg

∴

1)( 2 += XXg

)(Xg )(Xg

)(|)( XgXP
)(Xg∴
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Table 2-1: A list of primitive polynomial 
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• A field is a set of elements ( or symbols ) in 
which we can do addition, subtraction, 
multiplication, and division without leaving the 
set. Addition and  multiplication satisfy the 
commutative, associative and distributive 
laws.

7. Construction of Galois Field GF(2m)
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• The system of real numbers is a field, called the   
real-number field. 

• The system of complex numbers is also a field 
known as the complex number field. 

• The complex number field is actually constructed 
from the real-number field by requiring the 
symbol. 

as a root of the irreducible ( over the real 
number field ) polynomial X2 +1,  i.e.,

(          )2 + 1  =  0

,1−=i

1−
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• Every complex number is of the form,
a + bi

where a and b are real numbers.
• The complex-number field contains the real-

number field as a sub-field.
• The complex-number field is an extension field 

of the real-number field.
• The complex-umber and real-number fields 

have infinite elements.
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Finite Field
• It is possible to construct fields with finite number 

of elements. Such fields are called finite fields.
• Finite fields are also known as Galois fields after 

their discoverer.
• For any positive integer m≥1, there exists a Galois 

field of 2m elements, denoted GF(2m).   
• The construction of GF(2m) is very much the 

same as the construction of the complex-number 
field from the real-number field.
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• We begin with a primitive ( irreducible ) 
polynomial           of degree m with coefficients 
from the binary field GF(2).

• Since            has degree m, it must have roots 
somewhere.

• Let α be the root of             ,i.e.,
(Just as we let the symbol i =       as the root of 
the irreducible polynomial X2+1 over the real-
number field.)

1−

)(XP

)(XP

)(XP 0)( =αP
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• Starting from GF(2) = {0,1} and α , we define a 
multiplication “•” to introduce a sequence of 
powers of α as follows:

0 • 0 = 0
0 • 1 = 1 • 0 = 0
1 • 1 = 1
0 • α = α • 0 = 0
1 • α = α • 1= α
α2 = α • α
α3 = α • α • α

• • •
αi = α • α • • • • α{        

i t i m e s
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• From the definition of multiplication “•”,we see that
0 • αi = αi • 0 = 0
1 • αi = αi • 1= αi

αi • αj = αi+j.

• Now we have the following set of elements,
F = {0,1, α, α2, α3,……,}

which is closed under multiplication “•”.
•Since α is a root of           which divides               , 
α must also be a root of .

• Hence 
112 +−m

X

0112 =+−m

α

)(XP 112 +−m

X
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• This implies that

• As a result , F is finite and consists of following    
elements , 

F = { 0 , 1 , α , α2 , · · · ,         } ·
• Let α0 = 1, and multiplication is carried out as 
follows : 

For 0≤ i , j ≤ 2m-1 ,   αi • αj = αi+j = αr

where r is the remainder resulting from dividing i
+ j by 2m-1 . I.e.,

112 =−m

α

22 −m

α

)12(mod −+= mjir
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• Note that 

• Hence            is called the multiplicative 
inverse of αi and vise versa. 

• We can write

• We use α-i to denote the multiplicative inverse 
of αi.

• The element “1” is called the multiplicative 
identity ( or the unit element ). 

• Next we define division as follows: 
αi ÷ αj = αi • α-j = αi - j.

• Now we define an addition “ +” on F.

im −−12α

iii mm −−−−− =•= αααα 1212

11212 ==• −−− mm ii ααα
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• For 0 ≤ i ≤ 2m – 2 , we divide      by         . This 
results in

where             is the remainder and 

• Replacing  X by α , we have 

iX )(XP

1
110

)(0)(
)()()(

−
−+++=

+⋅=
+=

m
m

i

bbb
ba

bPa

αα

αα
αααα

L

)(Xb
1

110)( −
−+++= m

m XbXbbXb L

)()()( XbXPXaX i +=
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• This says that each nonzero element in F can be 
expressed as a polynomial of α with degree m – 1 
or less. 

• Of course, 0 can be expressed as a zero polynomial.
• Suppose 

αi = b0 + b1α + … + bm-1αm-1

αj = c0 + c1α + … + cm-1αm-1

• We define addition “ + “ as follows :
αi+αj =(b0+c0) + (b1+c1) α +… +(bm-1+cm-1) αm-1

= αk

where bi+ci is carried out with modulo 2 addition.   
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• Clearly αi + αi = 0 . 
• αi is its own additive inverse . 
• let  -αi denote the additive inverse of αi . Then 

-αi = αi

• Subtraction is defined as follows :
αi - αj = αi ＋ ( -αj )= αi ＋ αj . 

• Hence subtraction is the same as addition . 
• F = { 0 , 1 , α , α2 , … ,         } together with the 
multiplication and addition defined above form a 
field of  2m elements 

22 −m

α
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• Note that the correspondence 
b0+b1α+…+bm-1αm-1 and its vector form
(b0 , b1 ,…,bm-1 ) is one to one. 

• Every element in GF(2m ) can be represented in 
three forms: (1) power, (2) polynomial, and (3) 
vector forms. 

• It is easier to perform multiplication in power form. 
• It is easier to carry out addition in polynomial or 

vector forms
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Ex 2.7.1: Let m = 4. The polynomial

is a binary primitive polynomial of degree 4. 
• Let α be a root of           .   
• Then,          
• Using the fact that  α 4 + α4 = 0 and α4 + 0 = α4,  

we have     
α4 = α + 1.

• Now we consider the set {0, 1, α , α2 , α3 , α4 , 
α5 , α6 , α7 , α8 , α9 , α10 , α11 , α12 , α13 , α14 }. 

1)( 4 ++= XXXP

)(XP
01)( 4 =++= αααP
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• Note that α15 =1.
• Using the identity α4 = α + 1, every power αi

can be expressed as a polynomial of a with 
degree 3 or less as shown in Table 2-2. 

• For example,
α5 = α • α4 = α •( α + 1 ) = α2 + α,
α6 = α • α5 = α •( α2 + α ) = α3 + α2,
α7 = α • α6 = α •( α3 + α2 ) = α4 + α3,

= α+ 1 + α3 = α3 + α + 1,
·
·
·
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Table 2-2 The elements of GF(24) generated by 
P(X) = 1+ X+X4
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• Addition is done in polynomial form.
• Let 

αi = a0 + a1α + a2α2 + a3α3

αj = b0 + b1α + b2α2 + b3α3

• Then,
αi + αj = ( a0 +a1α + a2α2 + a3α3 ) + (b0 + b1α +  

b2α2 + b3α3)
= ( a0 + b0 ) + ( a1+ b1 ) α + ( a2 + b2 ) α2 + 

( a3 + b3 )α3

= αk (from Table 2-2).
where it is carried out with modulo-2 addition.
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• For example, 
α5 + α13 = (α+α2)+(1+α2+α3) = 1+α+α3 = α7 

α11 + α3 = (α+α2+α3)+α3  = α+α2 = α5

α7 + α7 = (1+α+α3)+(1+α+α3) = 0
• Since αi + αi = 0 , αi is its own additive inverse, 

i.e.,
αi = -αi

• Hence 
αi - αi = αi + ( -αj ) = αi+ αj

• Subtraction is identical to addition. 
• This complete our construction of Galois field 

GF(24) .
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• We say that GF(24) is generated by the primitive 
polynomial                               . 

• Note that there is a one-to-one correspondence 
between the polynomial , 

a0 + a1α + a2α2 + a3α3 ,
and the 4-tuple,

( a0 , a1 , a2 , a3 ,a4 )
• Hence every element in GF(24) power form, the   

polynomial form and the vector form, as shown 
in Table 2-2.

1)( 4 ++= XXXP
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• The primitive polynomial                                has 
4 roots which are all in GF(24). They are 

α ,   α2 ,        = α4 ,            = α8 . 
• For example, 

P(α4)= (α4)4 + (α4) + 1
= α16 + α4 + 1  
= α • α15 + α4 +1
= α + α4 + 1
= α4 + α + 1 = 0 . 

• α2 , α4 and α8 are called conjugate roots of α.

22α
32α

1)( 4 ++= XXXP
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• We can easily show that 
P(X) = (  X + α )( X + α2 ) ( X + α4 ) ( X + α8 )

= X4 + X + 1
Remark

• Galois fields are important in the study of a 
special class of block codes, called cyclic codes.
In particular, they are used for constructing the 
well known random error correcting BCH and 
Reed-Solomon code.

• GF(2m) is also called the extension field of GF(2). 
• Every Galois field of 2m elements is generated by 

a binary primitive polynomial of degree m.
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7. Primitive Elements
• Consider the Galois field GF(2m) generated by the 

primitive polynomial 
P(X) = p0 + p1X + … + pm-1Xm-1 + Xm.

• The element α (a root of  P(X) ) whose powers 
generate all the nonzero elements GF(2m) is called 
a primitive element of GF(2m). 

• In fact, any element β in GF(2m) whose powers 
generate all the nonzero elements of GF(2m) is a 
primitive element.
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Ex 2.7.2 : Consider the Galois field GF(24) given in 
Table 2-2 . The powers of   α4 are

which α4 generates all the 15 nonzero elements of 
GF(24) . Thus α4 is a primitive element,  and α7 is 
also a primitive element.
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Minimum Polynomials
Consider the Galois field GF(2m) generated by a 

primitive polynomial            of degree m. 
Let β be a nonzero element of GF(2m). 

• Consider the powers, 

• Let e be the smallest nonnegative integer for 
which 

• The integer “e” is called the exponent of β. 
• The powers,

are distinct and called conjugates of β.  

0 1 22 2 2 2, , ,..., ,...
i

β β β β

2 12 2 2, , ,....,
e

β β β β
−

2e

β β=

)(XP
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• Consider the product, 
φ(X) = (X+β)(X+β2)….(X +        )

= a0+ a1X+…+ ae-1 Xe-1+Xe

is a polynomial of degree e. 
• φ(X) is binary and irreducible over GF(2). 
• φ(X) is called the minimal polynomial of the 

element β. 
• φ(X) is the binary irreducible polynomial of 

minimum degree which has β as root. 
• φ(X) has β,  β2,…,         as all its roots. 

12 −e

β

12 −e

β
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Ex 2.7.3: Consider the field GF(24) given in Table 2-2 
• Let β = α3

• We form the following power sequence:
β = α3,  β2 = α6,  β4 = α12,  β8 = α24 = α9

β16 = α48 = α3 = β
• Since          = β , the exponent of β is 4. 
• We see that β = α3 , β2 = α6 , β4 = α12 and β8 = α9

are all distinct. 
• The minimum polynomial of β = α3 is 

42β
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))()()(()(
32 222 ββββφ ++++= XXXXX

))()()(( 91263 αααα ++++= XXXX
3129634 )( XX αααα ++++=

221181515129 )( Xαααααα ++++++
3027242115 )( ααααα +++++ X

1234 ++++= XXXX

which is irreducible. 



66

Table 2-3: Minimal polynomials of the elements in 
GF(24) generated by  1)( 4 ++= XXXP

Conjugate Roots Minimal Polynomials
0

1
X

1+X
842 ,,, αααα 14 ++ XX

12963 ,,, αααα
105 ,αα

1413117 ,,, αααα

1234 ++++ XXXX
12 ++ XX
134 ++ XX
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HW#2

1. Show that                    is irreducible over 
GF(2). You may use the statement “gfdeconv”
in MATLAB to help.

2. Construct a table  for GF(23) based on the 
primitive polynomial                            . 
Display the power, polynomial, and vector 
representations of each element. Determine 
the order of each element.

1)( 3 ++= XXXP

135 ++ XX
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