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1. Linear Block Codes

e A message of k bits is encoded into a codeword ( code
vector ) of n bits .

0= (00 0g) V= (o %)

J/

~
message codeword

e The 2k codewords corresponding to the 2k distinct
messages form an (n, k) block code. For the code to be
useful, all the 2k codewords must be distinct.

e An (n, k) block code is said to be linear if the vector sum
of two codewords Is a codeword.

e An (n, k) linear block code is simply a k-dimensional
subspace of the vector space V, of all the binary n-tuples .



e An (n, k) linear block code is spanned by k linearly
independent vectors, g,,9;,.... g, - The 2¥ codewords are
simply the 2k linear combinations of these k vectors.

e Encoding can be done as follows : The codeword for

message - IS
C=(Cy,Cyye,Cr4)

V=CJ,+C¢0,+...+C 10,

_go_

= (€01 Gy Cya) |
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e We may arrange the k vectors , g,,9,,...d,, ,as rows of a
K x n matrix,

_60_ Joo Jo1 R ¢ PN
J, 10 91 Qi

2
I

_gk—l_ _gk—l,O gk—l,l gk—l,n—l

e G iscalleda generator matrix of the code.



e Example 3-1: Letk=3and n=6. Table 3-1 gives a (6, 3)
linear block code.

Table 3-1
Message Codeword
(C,, C, C,) (Vg, V, Vy, Vg, V,, Vi)
(000) (000000)
(100) (011100)
(010) (101010)
(110) (110110)
(001) (110001)
(101) (101101)
(011) (011011)

(111) (000111)



A generator matrix for this code is

G=

©

||
, = O
, O K
o - B
o O -
o L O
R O O

The codeword for the message c = (101) is

v=°03¢-G
= 1.(011100)+0-(101010)+1-(110001)

= (011100)+(000000)+(110001)
= (101101) .




2. Linear Systematic Block Code

e An (n, k) linear block code is said to be systematic if it has
the following structure: Every codeword consists two parts
The message part consist of the k unaltered message bits
and the parity-check part consists of n - k parity-check bits
as shown in Figure 3-1

Parity-check port | Message port
n—Kk bits K bits

(YO’Vl’ Vn Kk 1’ n k1 n—l)

4

parity check bits message Dbits

Figure. 3-1 systematic format



e The (6, 3) code given by Table 3-1 is a linear systematic block
code.

e An (n, k) linear systematic code is completely specified ak x n
generator matrix of the following form .

O Foo Pr Faxal 00 - O
B J, Po Pp - Pl,n—k—l 010 -0
G= g, [= P Py

Prpk20 0 1 - 0},

P _Pk—l,O Pii - Bans0 0 0 - 1

where p; =0or1l.
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o Let I denote the k x k identity matrix . Then

o-p i

olet c= (Cy,Cyhe--,C,) e the message to be encoded .

The corresponding codeword is then,
V=(V,,V, V. )

=c-G=0,0,+C,0,+..+C 0, ,

e |t is easy to see that

(2) Vj= CoPot CiPyj+---F ChgPyy (3-2)
for0<j<n-k-1

11



o\\Ve see that the k code bits, v, , V41, --- , Vpq are identical

to the k message bits. The n - k code bits, v, ,v,..., V4 are
parity-check bits.

e Each parity—check bit is a sum ( modulo-2 ) of some message
bits.

¢(3-2) gives n - k equations which are called parity-check

eqguations. These parity-check equations completely specify
the code.

e Example 3-2: Consider the (6, 3) code given in Table 3-1. Its
generator matrix in systematic form is

0 1 1 1 0 0
G=|1 0 1 0 1 0

11 0 0 0 1

12



Let c= (C,,C;,C,) be the message to be encoded. Then the
codeword is

v=(Vy,V,,V,,V,,V,, V) =C-G

We find that

Vg = C,

V,=C4

V3 = Gy

Vo, =Cot Cy

V; = Cg +C, parity-check equations
Vo= *C *G

The parity-check equations actually tell us how to implement the
encoder.

13



l > Co » Cq

o C
Input l : W

7 —
\ \d K
. v, . j output

Figure 3-2 A (6, 3) code encoder

Parity register
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3. Parity-Check Matrix

e An (n, k) linear code can also be specified by an (n - k) x n
matrix y .

o Let v=(v,,V,...,v,,) beann-tuple. Then it isacodeword if
and only if .
v-H =(00...0)
i.e., the inner product of v and H is zero .
e The matrix H is called a parity—check matrix .
e [For an (n, k) systematic code with generator matrix
G=[P I.], the parity-check matrix is

— = —T

H I[In—k P ]
where o« is an (n-k) x (n-k) identity matrix and p' is the
transpose of 5

15



e Parity-check matrix is used for decoding.

e Example 3-3: Consider a (7, 4) linear systematic code with
generator matrix

1 1 0 1 0 0 0
— o 1 1 0 1 0 o0
=11 1 1 0 0o 1 o

1 0 1 0 0 0 1

Then the parity-check matrix in systematic form is

1 0 0 1 0 1 1
H =|/0 1 0 1 1 1
o 0 1 0 1 1 1

The parity-check equations are:

V2:C1+C2+C3
Vi =Cyt+Cy +C,
VO:CO+C2+C3



Input

T Channel

Parity register

Figure 3-2.1 A (7, 4) code encoder 17



4. Error Pattern

e Suppose a codeword V= (Vy,Vy,..,V, ;) Inablock code C is
transmitted .

e Let r=(r,r,..,r_,) be the corresponding received vector.

o If I'; #V; , we say that there Is a transmission error at the
J-th position of v .

e The difference between r and vy gives the pattern of
errors. This difference is defined as follows:

e = (o MyseeMng) + (Voo Vaseo Vig)
= (rO + VO’ rl + Vl’ ceay rn_l + Vn-l)

= (8, €1,---, €p.)
where r;+ v; Is carried out in modulo-2 addition .

18



e The vector ¢ is called an error pattern (or vector ) e; =1
Indicates that the j-th posmon of r hasan error.

e Obviously, we have —yie .

e There are a total 2" possible error patterns. Among these
error patterns, only 2" of them are correctable by an (n, k)
linear code. To minimize the probability of a decoding error,
it is desired to design a code which corrects the 2"k most
probable error patterns.

19



5. Syndrome and Error
Detection

e To test whether a received vector r contains
transmission errors, we compute the following (n — k) tuples

— - —T
S=1(Sy,S;s--sSyq)=F-H

e Then | Is acodeword in code C if and only if s=0

e Hence, if s20 , r isnotacodeword and contains
transmission errors. In this case, we say that the presence of
errors Is being detected.

20



e If =0, r isacodeword . In this case, r is assumed to be
error-free and accepted by the receiver. A decoding error
is committed if r is a codeword which is different from

the actually transmitted codeword .

e The (n-K) tuples, s=(s,,S,,....S. ), iscalled the
syndrome of r .

e Example 3-4: Consider a (7, 4) linear code with parity-
check matrix

21



Let r =(0100001) . The syndrome of ris

— - —T
S=1(Sy,S;S,)=r-H

1 0 0
0 1 0
0 0 1
=(0100001) |1 1 O
0 1 1
1 1 1
1 0 1]
= (111) %0

Hence r I1s not a codeword .



6. Syndrome Circuit

e Consider the (7, 4) code given in Example 3-4 .
eletr=(r,nr,r,1,,1,I,I,) bethe received vector .
The syndrome of r is

— — —T
S=1(Sy,S;S,)=r-H

— (ror1r2r3r4r5r6)’

P P, O FP O O K
O P Rk kP O L O
P B P O B O O
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e Then
So=Tp*rgtrg+rg
Sy =r +ry+r,+rg
Sy =l I, +rgtrs

A 4
-
-]
-
—
A

A rEnsitEnai Vsl g

/

Figure 3-3 syndrome circuit for the (7,4) code given in Example 3-4
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/. Syndrome and Error Pattern

eLetr=v+e be the received vector where y and g are
the transmitted codeword and error pattern respectively.

e Then the syndrome of r is

s=r-H =(v+e)-H (3-6)

e (3-6) gives a relationship between the unknown error
pattern and the syndrome.

e |n fact (3-6) gives the following n — k linear equations:

So= €t €kPo ot Chk+1Port - T €,1Pok1
S17€1 TPt €npstPr 1t T €41P1 ks (3-7)
Snk-1= Bkt CnkPrk-10t Cnks1Prk-11 T T €1 Prke1 k1

25



e Any method solving these n — k equations is a decoding
method.

e Since there are more unknowns than equations, these
equations do not have a unigue solution. In fact, there are
2k possible solutions. The true error pattern is just one of
them.

e To minimize the probability of a decoding error, the most
probable error pattern which satisfies the equations is
chosen as the true error pattern.

26



e Example 3-5: Let

H =

o O
o - O
, O O
O R B
, R O
e
, O -

Suppose V= (1000001) is transmitted and r = (1001001)
IS received. Then the syndrome of r Is

s=(5,,5,8,)=r-H =(110)

Lete=(e,,€,6,,6,,,,658) be the error pattern .
Since

- - —T

s=e-H

27



We have the following 3 equations:
1=¢e,+e;+e;+¢e;
l=e,+e;+e,+6
O=e,+e,+e:+¢

The solutions are:

(0000101), (1000011),
(0001000), (1001110),
(0010010), (1010100),
(0011111), (1011001),
(0100110), (1100000),
(0101011), (1101101),
(0110001), (1110111),
(0111100), (1111010),

28



Note the true error pattern,
e=r+v
=(1001001)+(1000001)
=(0001000),

IS just one of the 16 possible solutions. It is also the most
probable solution.

29



8. Standard Array

e Consider an (n, k) linear code C.
elet v=0,v,,.,v, . bethe2<codewordsinC.

o \We form an array with vectors from V ( the vector space
of all binary n-tuples) .

e First we arrange the 2k codewords from C as the top row of
the array with e = 0 as the element.

30



e Suppose we have formed the (j —1)-th row of the array.

e Choose a vector e; from V, which is not in the previous J-
1 row.

e From the J-th row by adding to each codeword In the top
row and placing e; +v; under y; .

e The array Is completed when no vectors can be chosen
from V..

e This array is called a standard array.

vi=0 V2 Vi V ok
€2 €2 +V2 €2 + Vi €2 + VK

€3 €3z + V2 €3 + Vi €3 + V ok

ezn—k ezn—k _|_V2 o ezn—k _|_V| oo ezn—k +V2k

31



< |
CDI||

@D |

@D |

2n—k
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e Each row is called a coset.
e There are exactly 2"k cosets.

e The first element of each coset is called the coset leader.
e Every vector in V  appears one and only once in the array.
e Example 3-6: A standard array for the (6, 3) code given in

Example 3-1 is shown below:

Coset

leader

000000 011100 101010 110001 110110 101101 011011 000111
100000 111100 001010 010001 010110 001101 110111 100111
010000 001100 111010 100001 100110 111101 001011 010111
001000 010100 100010 111001 111110 100101 010011 001111
000100 011000 101110 110101 110010 101001 011111 000011
000010 011110 101000 110011 110100 101111 011001 000101
000001 011101 101011 110000 110111 101100 011010 000110
100100 111000 001110 010101 010010 001001 111111 100011

33



Properties of a standard array:
e All the 2 vector in a coset have the same syndrome which
IS the syndrome of the coset leader.

g:(éj -I-gi)-ﬁT :éj -ﬁT

e Different cosets have different syndromes.

e There is one-to-one correspondence between a coset and
an ( n—k)-tuple syndrome. That is, there Is a one-to-one
correspondence between a coset leader and an (n — Kk )-
tuple syndrome.

e The above properties justify our claim that the n — k
equations of (3-7) for a given syndrome have 2k solutions.

34



9. Decoding and Correctable
Error Patterns

e Recall that every column of a standard array consists of
one and only one codeword, and all the other vectors are
sums of the codeword and the coset leaders. The j-th
column is

D, ={v,.e,+v,,e,+v,,...e , +V;}

e The 2 columns can be used as the decoding regions.

Let ¢ be the received vector. If  Is found in the j-th
column D;, then Is decoded into the codeword v .

To minimize the probability of a decoding error, the error
patterns that are most likely to occur for a given channel
should be chosen as the coset leaders.

35



10. Syndrome Decoding

e The decoding in the previous section can be simplified
by using the one-to-one relationship betweenan (n—k)
tuple syndrome and a coset leader (correctable error
pattern).

e Suppose a codeword is transmitted and is the error
pattern. Then the received vector is

F=VvV+¢€
e At the receiving end, If we can estimate ¢ , then the
transmitted codeword is obtained by adding e to r

V=r+e

36



e As a result, decoding can be done in 3 steps:
(1) Compute the syndrome of r, i.e.

(2) Find the coset leader e whose syndrome is equal
to s. Thene is assumed to be the error pattern
caused by the channel.

( 3) Decoding the received vector ¢ into the codeword

V=r+e

e This decoding process is called the syndrome decoding.

37



Table-look—up Implementation

e Syndrome decoding can be done by using a table which
consists of 2"k correctable error patterns (coset leaders)
and their corresponding syndromes,

syndrome Correctable error
patterns
g1 =0 -« > 61 =0
s, . e,

Szn—k < > ezn—k

38



e This can be implemented with a ROM or a combinational
logic circuit ( CLC).

e For CLC implementation, each error bit is regarded as a

switching function of the syndrome variables
SO ] Sl""’ Sn—k—l

e = f(Sy,S;s--r S, 1)

e For large n - k , the decoder would become very complex .

39



e Example 3-7: Consider a (6, 3) linear systematic code
generated by

[N
o -
o

G =

=[P 1]

—~ O
o B B
H

0 0 1

Its parity-check matrix is

1 0 0 0 1

— — =T
H:[|3P]=o 1
0




Encoding

(Co:CiCy) > (Vg,Vy,V,, 64, G, Cy)

Where

Vg = €, + C,
vV, = C, + C,
+ C

V, = Cy, 1

An encoding circuit is shown in Figure 3-2.

41



Syndrome look-up table

Syndrome Correctable error
patterns

Y (€, €1, €, €5, €, &)
(000) (000000)
(100) (100000)
(010) (010000)
(001) (001000)
011) (000100)
(101) (000010)
(110) (000001)
(111) (100100)

42



Combinational logic circuit implementation
€, =S, MS1MS2+S,MNS, NS,
€ = go MS; M gz
e, = go M gl NS,

e, =S0MNS, NS, +S,NS, NS,
e, =S, NS1NS,
€. =5,MS, NS

A complete decoder is shown in Figure 3-4.

43
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HW #3

1. Consider a systematic (8, 4) code whose parity-check
equations are V= U, +U, +U,

V, =U, +U, +U,

V, =Uy +U; +U,

V, =U, +U, + U,

construct an encoder for the code.

2. Construct a syndrome circuit for the code given in
Problem 1.

45



11. MLD for a BSC Based on a
Standard Array

e¢T0 minimize the probability of a decoding error, the error
patterns that are most likely to occur for a given channel
should be chosen as the coset leaders (correctable error
patterns).

e The Hamming weight of a binary n-tuple is defined as the
number of ones in it. For example, the Hamming weight
of v=(101100101) is 5, i.e.W(y)=5.

eIn a BSC, an error pattern of smaller weight is more
probable than an error pattern of larger weight.

e\\When a standard array Is formed, each coset leader should
be chosen to be a vector of least weight from the remaining
available vector.

46



e Choosing coset leader in this manner, each coset leader has
minimum weight in each coset.

e As a result, the syndrome decoding is the MLD for a BSC.

47



12. Hamming Distance

e The Hamming distance between two binary n-tuples 3
and b, denoted d (a,b), is defined as the number of places
where g and p differ.

e Example 3-8: Let a=(1001011) and b= (0100011).
Then, d(a,b) =3. o o o

e Triangle inequality: d (a, C) +d (C, b) > (a, b)

- b
° d(a.b) =W (a+D)

48



e For example, let a=(1001011) and b= (0100011).
Then a+b=(1101000). We see that

d(a,b)=W(a+b)=3

49



13. Minimum Distance of a Block
Code

e Let C be a linear block code. The minimum distance of C,

denote d ., Is definer as follows:

A - - - - —

d .. =min{d(v,w):v,weC,v#w}

e The minimum weight of C , denoted W_. , is defined as
follows:

w_ = min{w(v):veC,v =0}

m

50



e Note that

d . =min{d(v,w):v,weC,v = w}

= min{d (v +w);v,w e C,v = w}
= min{w(x): x e C, x = 0}
:Wmin

o1



e How to determine the Hamming distance in a block code.
e Let C be an (n, k) linear code with parity-check matrix H .

e For each code vector of Hamming weight 1, there exist |
columns of H such that sum of these | columns is equal to
the zero vector.

e Conversely, if there exist | columns of H whose vector sum is
the zero vector, there exists a code vector of Hamming
weight | in C.

e Example 3-9 : Iin example 3-4: no two or fewer columns of
sum to 0. The O, 2"d and 6™ columns sum to 0. Thus the | = 3.
The minimum distance of the (6, 3) linear code Is 3

1 0 0 1 0 1 1

52



14. Weight Distribution

e L et C be an (n, k) linear code.

e | et A, be the number of codewords in C with ( Hamming )
weight I.

e Then the set, {A,, A, A,,..., A } . is called the weight
distribution ( or spectrum ) of C.

e Aj=land Ay +A + ... +A =2K

e The weight distribution of the (6, 3) linear code given in
Example 3-11sA;=1,A;=0, A,=0,A;=4,A,=3,
A.=0,A;=0.

53



15. Error Detection with a Linear
Block Code

e Consider an (n, k) linear code C with minimum distance
dmin .

e Suppose a codeword y is transmitted and an non-zero error
pattern e is added to v during the transmission. Then the
received sequenceis r=v+e

e If r=v+e isnotacodeword, then its syndrome

_ - T
s=reH =0

In this case, the existence of errors in r is detected. The
error pattern is then called a detectable error pattern.

54



e However, if r =v+e happens to be a codeword, then the
syndrome of  Is zero. In this case,  Is assumed to be
error-free and accepted by the receiver. A decoding error is
committed. Since the existence of errors in r is not
detected, the error pattern e is called an undetectable error
pattern.

e Due to linear structure of the code, any error pattern which
IS Identical to an nonzero codeword is an undetectable error
pattern. Any error pattern which is not identical to an
nonzero codeword is detectable.

e There are 2%-1 undetectable error pattern and 2"— 2k + 1
detectable error patterns.

55



Probability of an undetectable error
e Let {A:0<1<n} be the weight distribution of C .
e The probability of an undetected error for C is

P(E)= Y AP (- p)"

e Note that P, ( E ) depends on the weight distribution of the
code .

e The probability P, ( E ) can also be computed from the
weight distribution of the dual code C* of C . Let
{B. : 0 <i < n}be the weight distribution of C*. Then

Py (E)=29 B(1-2p) ~(1—p)

56



e |t has been proved that there exist (n, k) linear block codes

with
P,(E)<27("Y
e A code Is said to be a good error-detecting code if the
above bound holds.

Error detecting capability
e Since the minimum distance of the code isd_.. ., two
codewords In C differ at leastd_. places .
e As aresult, no error pattern with weightd_. — 1 or less
( re.,d_.—1orfewer errors) will change a transmitted

codeword into another codeword .

57



e There exists at least one error pattern with d_._errors which
IS not detectable.

e The parameter d_. — 1 is called the random error-detecting
capability of the code.

58



16. Error Correcting Capability

¢ \We have shown that, with syndrome decoding, a linear
code is capable of correcting 2" error patterns.

e These error patterns are coset leaders.

e To achieve MLD, each coset leader must have the
smallest weight in coset which contains it. That is, the
more probable error patterns should be chosen as the coset
leaders.

e For a code with minimum distance d_._, we want to know
what kind of error patterns can be used as coset leaders.

59



e |t is possible to show that all the error patterns of weight
t=|(d,, —1)/2]orless (i.e., t or fewer errors ) can be used
as coset leaders.

e Therefore, if a codeword is transmitted and there are t or
fewer transmission errors, the received vector will be
decoded into the transmitted codeword based on the
syndrome decoding ( I.e., minimum distance decoding ).
Errors are hence corrected.

e However, there exists at last one error pattern with t+1
errors can not be used as a coset leader and hence is not
correctable. When this error pattern occurs, an incorrect
decoding will be made.

60



e This Is to say that all the error patterns of t or fewer errors
are guaranteed to be correctable. No such guarantee can be
made for the other error patterns.

e For this reason, the parameter t=|(d., -1/2] is called the

random error correcting capability of the code. The code
IS called a t-error correcting code.

e The number of guaranteed correctable error pattern is

Nt :i(un)

i=0
e In general, N, is a small fraction of the 2" correctable
error patterns.

61



e A code is said to be perfect if N, =2"% There are not too

many perfect codes .
Probability of an erroneous decoding
e An upper bound
n
P(E)< > (Dp'@-p)™
j=t+1

Example 3-10: Consider the (6, 3) code given in Example
3-1. Its minimum distance d .. = 3. Hence Its error
correcting capability is t=|(3-1)/2]=1. The code is
capable of correcting any error pattern with single error.
From its standard array (Table 3 —2), we see that the code
IS also capable of correcting an error pattern of double

Errors.
62
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17. Bounded Distance Decoding

e For large n - k, a decoder for correcting all the 2mk
correctable error patterns is very complex and expensive.

e To simplify the decoding complexity, we may design a
decoder which only corrects the error patterns which are
guaranteed by the error-correcting capability t of the code,
and raises flag to other detected but uncorrected error
patterns. This kind of decoding is called the bounded
distance decoding.

e Probability of a decoding error

P(E)= > (H)p'@-p)"’

j=t+1
64



e Decoded bit-error probability

<2 Y (J+0()p - p)"

j=t+1

e For large signal-to-noise rations,

p ~ dmin ()
n

e P, 1s normally called decoding bit-error-rate ( BER ).
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18. Hamming Bound

e For given n and k, it is desired to construct an (n, k)
code with minimum distance d_. as large as possible.

o Let t, be the largest integer which satisfies the following
Inequality,

n—k>log,[1+ () +(G)+...+ ()]
e The error-correcting capability t=|(d., —1)/2] of an

(n, k) code is at most equal to t,,1.e.,t <t,

e Hence d. .. <2t,+2.Thisisan upper bound on the
minimum distance of an ( n, k) linear code.
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19. Hamming Codes

e First class of codes devised for error correction.

e For any positive integer m > 3, there exists a Hamming code
with the following parameters:

Code length: n=2m-1
Dimension: k=2"-m-1
Number of parity-check symbols: n-k=m
Error correcting capability: t=1
Minimum distance: d.=3

67



e The parity-check matrix in systematic form is given as

follows: N —
H=[In P ]
where I, isan m x m identity matrix and the submatrix p'

consists of 2™ —m — 1 columns which are m-tuples of weight
2 Or more.

e The generator matrix is
G=[P I«]
e |t corrects all the error patterns with a single error and no
others.

e They are widely used for error control.

68



e The weight distribution is known . The number of codewords
of weight i, A, is simply the coefficient of z' in the expansion
of the following polynomial.

A(z) = ﬁ{(lqL 2)"+n(l-z)1-z*)"P"2)

which is called the weight enumerator.
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e The dual code is an (2™ -1, m) linear code with weight
enumerator,

B(z) =1+ (2" -1)z*
e For error detection , the probability of an undetected error
IS
Pa(E)=2"{l+(2" -DA-2p)* }-(1-p)* "

e For error correction, the probability of a decoding error is

PE)=Y())p - p)"
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Example 3-11: Let m = 3. There is a Hamming code of length

n = 23-1 =7 and dimension k = 23-3-1 = 4 whose parity-check

matrix is given as follows:

H -

o O B

Its generator matrix is

®|
]

1

0
1
1

o — O

o T N

— O O

P = P O

1
1
0

o O O B

R R O

o O +— O

e = =

o r O O

1
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e [tisa (7, 4) linear block code which is the same code
given in Example 3-3.

e Parity-check equations: message G — (u ..U, U 2)
Vo = Uy + Uy + Ug,
Vi = Ug+ U;+ Uy,
V, = U+ Uy + Us.

e Look-up decoding table

Syndromes Correctable Error Patterns
(Sg, S;s S,) (€, €, €,,€5,€,€5,8)
© 0 0 0O 000 0 00
@ 0 0 (1 000 0 00
(0] 1 0) O 1 0 0 0 00
© 0 1) OO 01 0 0 00
(1 1 0) O 0 01 0 00
© 1 1 0O 000 1 00
(1 1 1) (0O 0 0 00 10
(1 0 1) O 0 0 0 0 01




Syndromes Correctable Error

Patterns
( 01 Oy O ) (e,,€,,€,,€,,€,,6:,6€)
(0 0 0) (O 0 0 00 00
1 0 0 (1 00 0 0 0O
© 1 0 O 1 0 0 0 00
(0 0 1) (O 0 1 0 0 00
1 1 0 ©O 0 01 0 0 0)
© 1 1) © 000 1 00)
1 1 1 O 0 0 0 0 10
1 0 1) © 000001,




e Logic functions for the 7 error digits are:
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A complete decoder
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Figure 3-5 A complete decoder for (7,4) Hamming code
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20. Extended Linear Codes

e et C be an (n, k) linear code with both odd and even
weight codewords.

e Then C can be extended by adding an overall parity
check bit, denoted v,,, to the left of each codeword

V=(Vy, Vs,V 1) in C, where

V, =V, +V,+...+V_
e The extended codeword is then

Ve — (Voo’VO’Vl""’Vn—l)

e Note that v_= 0 if the weight of \_/ Isevenandv_=11f
the weight of \_/ IS odd
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e The resulting code, denoted C,, is called an extension C.
C.isan (n + 1, k) code and has only even weight
codewords.

e If the minimum distance d .. of C is odd, then the
minimum distance of C_isd_.. + 1 (even).

e Let H be the parity-check matrix of C. Then the parity
check matrix of C, Is

|0
He: S
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e An extended Hamming code has the following
parameters:

n=2m
k=2"+m+1
n-k=m+1
d. =4

min

e This is called a distance-4 Hamming code.
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21. Shortened Linear Codes

e et C be an (n, k) linear code with parity-check matrix
H =[l.« P land minimum distance d,__

e Let p;denote the matrix obtained by deleting A columns
from P .

e Then the code with
Hs =[Tnx P:]
as the parity-check matrix is an (n - A, k - 1) linear code.
e The code, denoted C,, Is called a shortened code of C.
e The minimum distance of C_ is at least d_. .

e Often C, is obtained deleting the right-most columns
fromp' .
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Distance-4 Hamming Codes

e Consider a hamming code of length n = 2™ — 1 with

parity-check matrix
H=[ln P]

where P’ consists all the m-tuple of weight 2 or more as
columns.

e Suppose we delete all the columns of even weight fromp'
This results in a m x 2™1 matrix

— = =T
H=[ln P ]
e The shortened code C, with H as the parity-check matrix
is a (2™1, m) linear code with minimum distance d_. =4
e C. Is called a distance-4 shortened Hamming code.
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Example 3-12: Letm =4 . The (15, 11) Hamming
code has the following parity-check matrix:

1100000011101111 |
010001100110111
001010101011011
000111010011101
e
14 p'
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e Deleting columns of even weight from P, we have the
following matrix

10000111
G000 10 11
00101101
00011110

® H. givesa (8, 4) shortened Hamming code.
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e Another shortening:

A code iIs shortened by deleting several messages
coordinates from the encoding process. In other words, for
some shortened message coordinates, we delete their
corresponding columns and rows in the generator matrix G.
For example: the generator of the (8,4) linear code is

(111111117
01011100
00101110

00010111
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If we like to delete the first bit in the codeword v , then
the new generator of this shortened code is shown
In the following

01011100 |
G =| 00101110
00010111
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1.

HW #4

In problem #1 in HW#3, show that the code has the
minimum Hamming distance 4.

Find out all syndrome patterns in the above problem.

Determine the weight distribution of (8,4) linear code
(mentioned in problem #1 in HW#3). Let the transition
probability of a BSC be p = 10-2. Compute the probability
of an undetected error of this code.
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22. Error Correction Performance
and MATLAB Example

e In following figure, the comparison of error correction
performance of a shorten Hamming code is shown.

e This shortened Hamming code with length 21, dimension 16,
and minimum Hamming distance 3 s illustrated in
MATLAB for error correcting. Each Chinese character is
constituted by 2 bytes (8-bit). This shortened Hamming
code is shorten from the (31, 26, 3) Hamming code.
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Figure 3-6: the original Chinese poem (left), degrade by
AWGN (middle), recovered with (21, 16, 3) Hamming
encoding/decoding (right)
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% to demo performance of (21, 16, 3)Hamming
code, which shortened from (31, 26, 3) Hamming
code.|<--10 bits for parity check -->|<--16
bits for Info-->|<--5 zero bits padded-->|

clear
fid = fopen('tfﬁﬁ%-txt','r');
A = fread(fid); % A 1s an array of iIntegers

S = char(A"); % to chinese character

SNR=6; % 6dB = SNR = 100log(Eb/No) =
10log(signal pw/(code rate*2*
noise _var)) ,assume signal pw =1

noise var = 1/(2*code_rate*10*(SNR/10));
D = max(size(A)); % D must be even

tt = 1; % correct 1 bit errors 88



Dmin = 2*tt+1; % minimum Hamming ditance
for 1=1:1:D
for J=1:1:8 % to get all bits In A

MSG(1,3) = bitget(A(1),});
end

for 1=1:2:D

Uu@g,:) = [MSG(r,:), MSG(i+1,:),
zeros(1,10)];

J = 1+1;

end 89



M =25;

NN 2"\M-1;

KK NN-M;

V = encode(U,NN,KK, "hamming®);
% Hamming(31,26,3) encoder

for 1=1:1:D/2

r(n,:) = -2*V(1,1:21)+1 + sgrt(noise_var)*
randn(1,21);

% the shorten Hamming code 1s transmitted
with length 21 and information 16 bits

% olny first 21 bits are fetched.

end
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for 1=1:1:D/2
for J=1:1:21
iT(r(r,3) > 0) ya) = 0;

% hard decision output

else y() = 1;

end
end

Y(1,2) = [y, zeros(1,10)];
end

U hat = decode(Y,NN,KK, "hamming®);
% hamming(31,26,3) decoder
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for 1=1:1:D/2

b(2*1-1,:) = Y(1, 6:13); % disregard
parity check bits and only the 16 info. bits
are fetched

b(2*1,:) = Y(1, 14:21);

MSG_hat(2*1-1,:) = U hat(1,1:8); %the iInfo.
16 bits are fetched

MSG_hat(2*1,:) = U hat(i1,9:16);
end
for 1=1:1:D

B(i) = Bits2num(b(i,:),.8);

C(r) = Brts2num(MSG_hat(1,:),8); %the
info. Bits
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fid2 = fopen("FHH|F (AWCNFEFT 2 . txt™ , "w");
fi1d3 = fopen('tfﬁﬁ%(Hamming decoded) .txt","w");
fprintf(fid2,'%c',éhar(B));
fprintf(fid3, "%c" ,char(C));

fclose("all™);

93



HW #4-1

1. Inthe previous MATLAB program, we encode each
Chinese character with Hamming encoding.

2. Now, for some reason, we would like to encode this file
“Erﬁ]n%.txt” with Hamming encoding by the line-by-line
way. Please modify this program and adjust the SNR
such that there are no errors in the “decoded file”.

3. What kind of the shortened Hamming code is used ?
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