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1.  Linear Block Codes
• A message of  k bits is encoded into a codeword ( code 

vector ) of n bits . 

• The 2k codewords corresponding to the 2k distinct  
messages form an (n, k) block code. For the code to be 
useful, all the 2k codewords must be distinct. 

• An (n, k) block code is said to be linear if the vector sum 
of two codewords is a codeword. 

• An (n, k) linear block code is simply a k-dimensional 
subspace of the vector space Vn of all the binary n-tuples . 
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• An (n, k) linear block code is spanned by k linearly 
independent vectors,               . The 2k codewords are 
simply the 2k linear combinations of these k vectors.

• Encoding can be done as follows : The codeword for 
message                             is
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• We may arrange the k vectors ,                       , as rows of a  
k × n matrix,

• is called a generator matrix of the code.
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• Example 3-1: Let k = 3 and n = 6 .  Table 3-1 gives a (6, 3) 
linear block code. 

Table 3-1

Message Codeword

(0 0 0) (0 0 0 0 0 0)
(1 0 0) (0 1 1 1 0 0)
(0 1 0) (1 0 1 0 1 0)
(1 1 0) (1 1 0 1 1 0)
(0 0 1) (1 1 0 0 0 1 )
(1 0 1) (1 0 1 1 0 1)
(0 1 1) (0 1 1 0 1 1)
(1 1 1) (0 0 0 1 1 1)

0 1 2 3 4 5( , , , , , )v v v v v v),,( 210 ccc
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A generator matrix for this code is

The codeword for the message                   is

=  1·(011100)+0·(101010)+1·(110001)
=  (011100)+(000000)+(110001)
=  (101101) .    
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2. Linear Systematic Block Code

• An (n, k) linear block code is said to be systematic if it has 
the following structure: Every codeword consists two parts 
The message part consist of the k unaltered message bits 
and the parity-check part consists of n - k parity-check bits 
as shown in Figure 3-1 

Parity-check port    Message port

n – k bits                 k bits
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• The (6, 3) code given by Table 3-1 is a linear systematic block 
code. 

•An (n, k) linear systematic code is completely specified a k × n
generator matrix of the following form .

where pij = 0 or 1 .
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• Let      denote the k × k identity matrix . Then

• Let                                    be the message to be encoded . 

The corresponding codeword is then ,

• It is easy to see that 
(1) vn-k+i = ci ,   for 0 ≤ i ≤ k (3-1)

(2) vj = c0p0,j+ c1p1,j+…+ ck-1pk-1,j (3-2)
for 0 ≤ j ≤ n - k-1
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•We see that the k code bits, vn-k , vn-k+1 , … , vn-1 are identical 
to the k message bits. The n - k code bits, v0 ,v1,…, vn-k-1 are 
parity-check bits. 

• Each parity–check bit is a sum ( modulo-2 ) of some message 
bits. 

•(3-2) gives n - k equations which are called parity-check 
equations. These parity-check equations completely specify 
the code.

• Example 3-2: Consider the (6, 3) code given in Table 3-1. Its 
generator matrix in systematic form is 
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Let                          be the message to be encoded. Then the 
codeword is

We find that 
v5 = c2
v4 = c1
v3 = c0
v2 = c0 + c1
v1 = c0            + c2                 
v0 =    + c1 + c2

),,( 210 cccc =

Gcvvvvvvv ⋅== ),,,,,( 543210

}parity-check equations

The parity-check equations actually tell us how to implement the 
encoder.
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c0 c1 c2

output
+ + +

v0 v1 v2

Parity register

Input

Figure 3-2   A  (6, 3) code encoder
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3.  Parity-Check Matrix

• An (n, k) linear code can also be specified by an (n - k) × n
matrix      . 

• Let                            be an n-tuple.  Then  it is a codeword if 
and only if 

i.e., the inner product of        and      is zero . 
• The matrix        is called a parity–check matrix .
• For an (n, k) systematic code with generator matrix       

,  the parity-check matrix is

where         is an (n-k) × (n-k) identity matrix and       is the 
transpose of 
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• Parity-check matrix is used for decoding. 
• Example 3-3: Consider a (7, 4) linear systematic code with 

generator matrix 

Then the parity-check matrix in systematic form is 

The parity-check equations are: 
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c0 c1 c2

Figure 3-2.1   A  (7, 4) code encoder
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4.  Error Pattern
• Suppose a codeword                               in a block code C is 

transmitted . 
• Let                            be the corresponding received vector. 
• If                , we say that there is a transmission error at the 

j-th position of      . 
• The difference between      and      gives the pattern of 

errors. This difference is defined as follows: 
= (r0, r1,…,rn-1) + (v0, v1,… ,vn-1)
= (r0 + v0,  r1 + v1,…,  rn-1 + vn-1)
= (e0, e1,…, en-1) 

where  ri + vi is carried out in modulo-2 addition .

),...,,( 110 −= nvvvv

),...,,( 110 −= nrrrr
jj vr ≠

v
r v

e



19

• The vector      is called an error pattern (or vector )  ej = 1    
indicates that the j-th position of      has an error. 

• Obviously, we have                   . 
•There are a total 2n possible error patterns. Among these 

error patterns, only 2n-k of them are correctable by an (n, k) 
linear code. To minimize the probability of a decoding  error, 
it is desired to design a code which  corrects the 2n-k most 
probable error patterns. 

e
r
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5. Syndrome and Error 
Detection

• To test whether a received vector          contains 
transmission errors, we compute the following (n – k) tuples

• Then      is a codeword in code C if and only if 
• Hence, if            ,       is not a codeword and contains 

transmission errors. In this case, we say that the presence of 
errors is being detected.

r
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• If          ,     is a codeword . In this case,      is assumed to be 
error-free and accepted by the receiver. A decoding error
is committed if       is a codeword which is different from 
the actually transmitted codeword .

• The (n – k) tuples,                               ,   is called the 
syndrome of       . 

• Example 3-4:  Consider a (7, 4) linear code with parity-
check matrix 

0=s r r
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Let                           . The syndrome of     is  

Hence       is not a codeword . 
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6.    Syndrome Circuit
• Consider the (7, 4) code given in Example 3-4 . 
• Let                                            be the received vector . 

The syndrome of      is
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• Then 
S0 = r0 + r3 + r5 + r6
S1 = r1 + r3 + r4 + r5
S2 = r2 + r4 + r5 + r6  .

Figure 3-3 syndrome circuit for the (7,4) code given in Example 3-4

r0 r1 r5r4r3r2 r6

+ + +

S0 S1 S2
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7.  Syndrome and Error Pattern

• Let                 be the received vector where     and      are 
the transmitted codeword and error pattern respectively. 

• Then the syndrome of      is 

(3-6)

• (3-6) gives a relationship between the unknown error 
pattern and the syndrome. 

• In fact (3-6) gives the following n – k linear equations: 
s0 =  e0 + en-kp0,,0 + en-k+1p0,1 + · · · + en-1p0,k-1
s1 = e1 + en-kp1,0 + en-k+1p1,,1 + · · · + en-1p1,k-1

sn-k-1 = en-k-1+ en-kpn-k-1,0 + en-k+1pn-k-1,1 + · · · + en-1pn-k-1,k-1

evr += v e

r

TT
HevHrs ⋅+=⋅= )(

TTT
HeHeHv ⋅=⋅+⋅=

M
(3-7)



26

• Any method solving these n – k equations is a decoding 
method. 

• Since there are more unknowns than equations, these 
equations do not have a unique solution. In fact, there are 
2k possible solutions. The true error pattern is just one of 
them. 

• To minimize the probability of a decoding error,  the most 
probable error pattern which satisfies the equations is 
chosen as the true error pattern. 
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• Example 3-5: Let 

Suppose                             is transmitted and      
is received. Then the syndrome of     is 

Let                                       be the error pattern . 
Since 
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We have the following 3 equations:
1 = e0 + e3 + e5 + e6

1 = e1 + e3 + e4 + e5

0 = e2 + e4 + e5 + e6

The solutions are: 
( 0 0 0 0 1 0 1 ),      ( 1 0 0 0 0 1 1 ),
( 0 0 0 1 0 0 0 ),      ( 1 0 0 1 1 1 0 ), 
( 0 0 1 0 0 1 0 ),      ( 1 0 1 0 1 0 0 ),
( 0 0 1 1 1 1 1 ),      ( 1 0 1 1 0 0 1 ),
( 0 1 0 0 1 1 0 ),      ( 1 1 0 0 0 0 0 ),
( 0 1 0 1 0 1 1 ),      ( 1 1 0 1 1 0 1 ),
( 0 1 1 0 0 0 1 ),      ( 1 1 1 0 1 1 1 ),
( 0 1 1 1 1 0 0 ),      ( 1 1 1 1 0 1 0 ),
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Note the true error pattern,

= ( 1 0 0 1 0 0 1 ) + ( 1 0 0 0 0 0 1 ) 
= ( 0 0 0 1 0 0 0 ),

is just one of the 16 possible solutions. It is also the most
probable solution.

vre +=
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8.   Standard Array

• Consider an (n, k) linear code C. 
• Let                              ,  be the 2k codewords in C.
• We form an array with vectors from Vn( the vector space 

of all binary n-tuples) .
• First we arrange the 2k codewords from C as the top row of 

the array with           as the element.  

kvvv
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• Suppose we have formed the (j –1)-th row of the array. 
• Choose a vector ej from Vn which is not in the previous j-

1 row.
• From the j-th row by adding   to each codeword  in the top 

row and placing              under      . 
• The array is completed when no vectors can be chosen 

from Vn. 
• This array is called a standard array. 
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• Each row is called a coset. 
• There are exactly 2n-k cosets. 
• The first element of each coset is called the coset leader. 
• Every vector in Vn appears one and only once in the array.
• Example 3-6: A standard array for the (6, 3) code given in 

Example 3-1 is shown below:  

Coset
leader
000000 011100 101010 110001 110110 101101 011011 000111

100000 111100 001010 010001 010110 001101 110111 100111

010000 001100 111010 100001 100110 111101 001011 010111

001000 010100 100010 111001 111110 100101 010011 001111

000100 011000 101110 110101 110010 101001 011111 000011

000010 011110 101000 110011 110100 101111 011001 000101

000001 011101 101011 110000 110111 101100 011010 000110

100100 111000 001110 010101 010010 001001 111111 100011
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Properties of a standard array:
• All the 2k vector in a coset have the same syndrome which 

is the syndrome of the coset leader.

• Different cosets have different syndromes. 
• There is one-to-one correspondence between a coset and 

an ( n – k )-tuple syndrome. That is, there is a one-to-one 
correspondence between a coset leader and an ( n – k )-
tuple syndrome. 

• The above properties justify our claim that the n – k
equations of (3-7) for a given syndrome have 2k solutions.  

T
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T
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9.  Decoding and Correctable 
Error Patterns

• Recall that every column of a standard array consists of 
one and only one codeword, and all the other vectors are 
sums of the codeword and the coset leaders. The j-th
column is 

• The 2k columns can be used as the decoding regions.
• Let      be the received vector. If      is found in the j-th

column Dj, then  is decoded into the codeword      . 
• To minimize the probability of a decoding error,  the error 

patterns that are most likely to occur for a given channel 
should be chosen as the coset leaders. 

2 3 2
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10. Syndrome Decoding

• The decoding in the previous section  can be simplified 
by using  the one-to-one relationship between an ( n – k ) 
tuple syndrome and a coset leader (correctable error 
pattern). 

• Suppose a codeword is transmitted and is the error  
pattern. Then the received vector is 

• At the receiving end, if we can estimate     , then the 
transmitted codeword  is obtained by adding      to 

evr +=
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• As a result, decoding can be done in  3  steps:
( 1 ) Compute the syndrome of    ,   i.e.

( 2 ) Find the coset leader     whose syndrome is equal 
to   .  Then     is assumed to be the error pattern 
caused by the channel. 

( 3 ) Decoding the received vector     into the codeword

• This decoding process is called the syndrome decoding. 
.

r
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Table–look–up Implementation
• Syndrome decoding can be done by using a table which 

consists of 2n-k correctable error patterns (coset leaders) 
and their corresponding syndromes, 

syndrome Correctable error 
patterns

1 0s =

2s
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1 0e =
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• This can be implemented with a ROM or a combinational 
logic circuit ( CLC ). 

• For CLC implementation, each error bit is regarded as a 
switching function of the syndrome variables  

• For large n - k , the decoder would become very complex . 

110 ,...,, −−knsss

0 1 1( , ,..., )i n ke f s s s − −=
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• Example 3-7: Consider a (6, 3) linear systematic code 
generated by

Its parity-check matrix is 

3

0 1 1 1 0 0
1 0 1 0 1 0
1 1 0 0 0 1
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Encoding 

Where 

An encoding circuit is shown in Figure 3-2. 
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Syndrome look-up table

Syndrome Correctable error 
patterns

(0 0 0) (0 0 0 0 0 0)
(1 0 0) (1 0 0 0 0 0)
(0 1 0) (0 1 0 0 0 0)
(0 0 1) (0 0 1 0 0 0)
(0 1 1) (0 0 0 1 0 0)
(1 0 1) (0 0 0 0 1 0)
(1 1 0) (0 0 0 0 0 1)
(1 1 1) (1 0 0 1 0 0)

0 1 2( , , )s s s 0 1 2 3 4 5( , , , , , )e e e e e e
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Combinational logic circuit implementation

A complete decoder is shown in Figure 3-4. 
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HW #3
1. Consider a systematic (8, 4) code whose parity-check 

equations are

construct an encoder for the code.

2. Construct a syndrome circuit for the code given in 
Problem 1.
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11.  MLD for a BSC Based on a 
Standard Array

•To minimize the probability of a decoding error, the  error 
patterns that are most likely to occur for a given channel 
should be chosen as the coset leaders (correctable error 
patterns). 

•The Hamming weight of a binary n-tuple is defined as the 
number of ones in it. For example, the Hamming weight     
of                                is  5,    i.e. W(    ) = 5.

• In a BSC, an error pattern of smaller weight is more 
probable than an error pattern of larger weight. 

•When a standard array is formed, each coset leader should 
be chosen to be a vector of least weight from the remaining 
available vector. 

)101100101(=v v
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•Choosing coset leader in this manner, each coset leader has 
minimum weight in each coset. 

• As a result, the syndrome decoding is the MLD for a BSC. 
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12.  Hamming Distance

• The Hamming distance between two binary n-tuples
and    , denoted           , is defined as the number of places 
where      and       differ.

• Example 3-8: Let                          and                         .
Then,     .

• Triangle inequality:

),( bad
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b
a b
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• For example, let                           and                 .
Then                               .   We see that

)1001011(=a )0100011(=b
)1101000(=+ ba

( , ) ( ) 3d a b W a b= + =
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13.   Minimum Distance of a Block 
Code

• Let C be a linear block code. The minimum distance of C, 
denote dmin , is definer as follows:

• The minimum weight of C , denoted Wmin , is defined as 
follows:

},,:),(min{min wvCwvwvdd ≠∈=∆

}0,:)(min{min ≠∈= vCvvww ∆
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• Note that 
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• How to determine the Hamming distance in a block code.
• Let C be an (n, k) linear code with parity-check matrix .  
• For each code vector  of Hamming weight l, there exist l 

columns of such that sum of these l columns is equal to 
the zero vector. 

• Conversely, if there exist l columns of       whose vector sum is 
the zero vector, there exists a code vector of  Hamming 
weight l in C. 

• Example 3-9 : in  example 3-4: no two or fewer columns of 
sum to 0. The 0th, 2nd and 6th columns sum to 0. Thus the l = 3. 
The minimum distance of the (6, 3) linear code  is 3
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14.   Weight Distribution

• Let C be an (n, k) linear code. 
• Let Ai be the number of codewords in C with ( Hamming ) 

weight i. 
• Then the set,                                    , is called the weight 

distribution ( or spectrum ) of C. 
• A0 = 1 and A0 + A1 + … + An = 2k

• The weight distribution of the (6, 3) linear code given in 
Example 3-1 is A0 = 1, A1 = 0,  A2 = 0, A3 = 4, A4 = 3, 
A5 = 0, A6 = 0. 

},...,,,{ 210 nAAAA
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15.  Error Detection with a Linear 
Block Code

• Consider an (n, k) linear code C with minimum distance 
dmin . 

• Suppose a codeword     is transmitted and an non-zero error
pattern     is added to    during the transmission. Then the
received sequence is 

• If                  is not a codeword, then its syndrome 

In this case, the existence of errors in     is detected. The
error pattern  is then called a detectable error pattern. 

v
e v

evr +=

evr +=
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T
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• However, if                happens to be a codeword, then the 
syndrome of       is zero. In this case,       is assumed to be
error-free and accepted by the receiver. A decoding error is
committed. Since the existence of errors in    is not 
detected, the error pattern     is called an undetectable error 
pattern. 

• Due to linear structure of the code, any error pattern which 
is identical to an nonzero codeword is an undetectable error
pattern. Any error pattern which is not identical to an
nonzero codeword is detectable. 

• There are 2k-1 undetectable error pattern and 2n – 2k + 1 
detectable error patterns. 

evr +=

r r

r
e
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Probability of an undetectable error
• Let                            be the weight distribution of C . 
• The probability of an undetected error for C is 

• Note that Pud ( E ) depends on the weight distribution of the
code . 

• The probability Pud ( E ) can also be computed from the 
weight distribution of the dual code        of C . Let 

be the weight distribution of   . Then 
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• It has been proved that there exist (n, k) linear block codes
with 

• A code is said to be a good error-detecting code if the 
above bound holds. 

Error detecting capability
• Since the minimum distance of the code is dmin, two 

codewords in C differ at least dmin places . 
• As a result , no error pattern with weight dmin– 1 or less

(  i.e. , dmin– 1 or fewer errors ) will change a transmitted
codeword into another codeword . 

)(2)( kn
ud EP −−≤
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• There exists at least one error pattern with dmin errors which
is not detectable. 

• The parameter dmin – 1 is called the random error-detecting
capability of the code. 
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16.   Error Correcting Capability

• We have shown that, with syndrome decoding, a linear 
code is capable of correcting 2n-k error patterns. 

• These error patterns are coset leaders. 
• To achieve MLD, each coset leader must  have the 

smallest weight in coset which contains it.  That is, the
more probable error patterns should be chosen as the coset
leaders. 

• For a code with minimum distance dmin, we want to know
what kind of error patterns can be used as coset leaders. 
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• It is possible to show that all the error patterns of weight
or less ( i.e., t or fewer errors ) can be used

as coset leaders. 
• Therefore, if a codeword is transmitted and there are t or

fewer transmission errors, the received vector will be
decoded into the transmitted codeword based on the
syndrome decoding ( i.e., minimum distance decoding ).
Errors are hence corrected. 

• However, there exists at last one error pattern with t+1
errors can not be used as a coset leader and hence is not
correctable. When this error pattern occurs, an incorrect
decoding will be made. 

⎣ ⎦2/)1( min −= dt
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• This is to say that all the error patterns of t or fewer errors
are guaranteed to be correctable. No such guarantee can be
made for the other error patterns. 

• For this reason, the parameter                           is called the 
random error correcting capability of the code. The code 
is called a t-error correcting code. 

• The number of guaranteed correctable error pattern is 

• In general, Nt is a small fraction of the 2n-k correctable 
error patterns. 
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• A code is said to be perfect  if  Nt = 2n-k.  There are not too 
many perfect codes . 

Probability of an erroneous decoding
• An upper bound 

Example 3-10: Consider the (6, 3) code given in Example
3-1. Its minimum distance dmin = 3. Hence its error
correcting capability is                              . The code is
capable of correcting any error pattern with single error.
From its standard array (Table 3 –2), we see that the code
is also capable of correcting an error pattern of double 
errors. 
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17.  Bounded Distance Decoding

• For large n - k, a decoder for correcting all the 2n-k

correctable error patterns is very complex and expensive. 
• To simplify the decoding complexity, we may design a

decoder which only corrects the error patterns which are
guaranteed by the error-correcting capability t of the code,
and raises flag to other detected but uncorrected error
patterns. This kind of decoding is called the bounded
distance decoding. 

• Probability of a decoding error 
jnj

n
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n
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• Decoded bit-error probability 

• For large signal-to-noise rations, 

• Pb is normally called decoding bit-error-rate ( BER ). 
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18.   Hamming Bound

• For given n and k, it is desired to construct an (n, k)
code with minimum distance dmin as large as possible. 

• Let      be the largest integer which satisfies the following
inequality, 

• The error-correcting capability                                of an 
(n, k) code is at most equal to

• Hence                         . This is an upper bound on the   
minimum distance of an ( n , k ) linear code. 

0t
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19.   Hamming Codes
• First class of codes devised for error correction. 
• For any positive integer m 3, there exists a Hamming code

with the following parameters: 

Code length:                                         n = 2m - 1
Dimension:                                           k = 2m - m -1
Number of parity-check symbols:        n - k = m
Error correcting capability:                  t = 1
Minimum distance:                               dmin= 3 

≥
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• The parity-check matrix in systematic form is given as
follows: 

where       is an m × m identity matrix and the submatrix    
consists of  2m – m – 1 columns which are m-tuples of weight
2 or more. 

[ ]
T

mH I P=
mI T

P

• The generator matrix is 

• It corrects all the error patterns with a single error and no
others. 

• They are widely used for error control. 

][ kIPG =
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• The weight distribution is known . The number of codewords 
of weight i,  Ai is simply the coefficient of zi in the expansion 
of the following polynomial. 

which is called the weight enumerator. 
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• The dual code is an (2m –1, m) linear code with weight
enumerator, 

• For error detection , the probability of an undetected error
is 

• For error correction, the probability of a decoding error is

1
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Example 3-11:  Let m = 3. There is a Hamming code of length 
n = 23-1 = 7 and dimension k = 23-3-1 = 4 whose parity-check 
matrix is given as follows: 

Its generator matrix is

⎥
⎥
⎥
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• It is a (7, 4) linear block code which is the same code   
given in Example 3-3 . 

• Parity-check equations: message 
v0 = u0 + u2 + u3 ,
v1 = u0 + u1 + u2 ,
v2 = u1 + u2 + u3 .

• Look-up decoding table 
Syndromes Correctable Error Patterns

(0       0       0) (0    0    0    0    0    0   0)

(1        0       0) (1    0    0    0    0    0   0)

(0       1       0) (0    1    0    0    0    0   0)

(0        0       1) (0    0    1    0    0    0   0)

(1        1       0) (0    0    0    1    0    0   0)

(0        1       1) (0    0    0    0    1    0   0)

(1        1       1) (0    0    0    0    0    1   0)

(1        0       1) (0    0    0    0    0    0   1)

0 1 2( , , )s s s 0 1 2 3 4 5 6( , , , , , , )e e e e e e e

),,( 210 uuuu =
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Syndromes Correctable Error 
Patterns

(0       0       0) (0    0    0    0    0    0   0)

(1        0       0) (1    0    0    0    0    0   0)

(0       1       0) (0    1    0    0    0    0   0)

(0        0       1) (0    0    1    0    0    0   0)

(1        1       0) (0    0    0    1    0    0   0)

(0        1       1) (0    0    0    0    1    0   0)

(1        1       1) (0    0    0    0    0    1   0)

(1        0       1) (0    0    0    0    0    0   1)

0 1 2( , , )s s s 0 1 2 3 4 5 6( , , , , , , )e e e e e e e
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• Logic functions for the 7 error digits are:

2100 ssse ∩∩= 2101 ssse ∩∩=

2102 ssse ∩∩=
2103 ssse ∩∩=

2104 ssse ∩∩=
2105 ssse ∩∩=

2106 ssse ∩∩=



A complete decoder 

Figure 3-5   A complete decoder for (7,4) Hamming code

r0 r1 r5r4r3r2 r6

+ + +S0 S1 S2

v0 v1 v2 v3 v4 v5 v6

r0 r1 r2 r3 r4 r5 r6

e0 e1 e2 e3 e4 e5 e6

75
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20.  Extended Linear Codes
• Let C be an (n, k) linear code with both odd and even 

weight codewords.
• Then C can be extended by adding an overall parity 

check bit , denoted  v∞ , to the left of each codeword   
in C, where

• The extended codeword is then

• Note that  v∞ = 0 if the weight of      is even and v∞ = 1 if  
the weight of          is odd  

),...,,( 110 −= nvvvv

110 ... −∞ +++= nvvvv

),...,,,( 110 −∞= ne vvvvv

v
v
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• The resulting code, denoted Ce, is called  an extension C. 
Ce is an (n + 1, k) code and has only even weight 
codewords. 

• If the minimum distance dmin of  C is odd, then  the 
minimum distance of Ce is dmin + 1 (even). 

• Let    be the parity-check matrix of  C. Then the parity 
check matrix of Ce is 

1 1 1
0

0

eH
H
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• An extended Hamming code has the following 
parameters:

n = 2m

k = 2m + m + 1
n - k = m + 1
dmin =  4

• This is called a distance-4 Hamming code. 
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21.  Shortened Linear Codes
• Let C be an (n, k) linear code with parity-check matrix

and minimum distance dmin. 
• Let       denote the matrix obtained by deleting λ columns 

from       . 
• Then the code with 

as the parity-check matrix is an (n - λ, k - λ) linear code. 
• The code, denoted Cs, is called a shortened code of C. 
• The minimum distance of Cs is at least dmin.
• Often Cs is obtained deleting the right-most columns 

from       .
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Distance-4 Hamming Codes
• Consider a hamming code of length n = 2m – 1 with 

parity-check matrix   

where       consists all the m-tuple of weight 2 or more as 
columns. 

T
P

[ ]
T

mH I P=

• Suppose we delete all the columns of even weight from 
This results in a m × 2m-1 matrix 

• The shortened code Cs with       as the parity-check matrix 
is a (2m-1, m) linear code with minimum distance dmin = 4

• Cs is called a distance-4 shortened Hamming code. 

[ ]
T

mH I P=
SH

T
P
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⎥
⎥
⎥
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110110010101010
101110100011001
011111000000111

H

Example 3-12: Let m = 4 . The (15, 11) Hamming 
code has the following parity-check matrix: 

T
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• Deleting columns of even weight from     , we have the 
following matrix

• gives a (8, 4) shortened Hamming code. 

T
P

SH
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•Another shortening:

A code is shortened by deleting several  messages 
coordinates from the encoding process. In other words, for 
some shortened message coordinates, we delete their 
corresponding columns and rows in the generator matrix G. 
For example: the generator of the (8,4) linear code is
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If we like to delete the first bit in the codeword       ,   then  
the new generator of this shortened code is shown 
in the following

v
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HW #4

1. In problem #1 in HW#3, show that the code has the 
minimum Hamming distance 4.

2. Find out all syndrome patterns in the above problem.

3. Determine the weight distribution of (8,4) linear code 
(mentioned in problem #1 in HW#3). Let the transition 
probability of a BSC be p = 10-2. Compute the probability 
of an undetected error of this code. 
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22. Error Correction Performance 
and MATLAB Example

• In following figure, the comparison of error correction 
performance of a shorten Hamming code  is shown.

• This shortened Hamming code with length 21, dimension 16, 
and minimum Hamming distance 3 is illustrated in 
MATLAB for error correcting. Each Chinese character is 
constituted  by 2 bytes (8-bit). This shortened Hamming 
code is shorten from the (31, 26, 3) Hamming code.



87

烽火連三月

a書抵萬金

白頭騷件短

渾欲不勝簪

?

湊破山河在

姜春草木深

感時花濺淚

恨別鳥驚心

烽火連三月

家書抵萬金

白頭騷更短

渾欲不勝簪

國破山河在

城春草木深

感時花濺淚

恨別鳥驚心

烽火連三月

家書抵萬金

白頭騷更短

渾欲不勝簪

國破山河在

城春草木深

感時花濺淚

恨別鳥驚心

.

Figure 3-6: the original Chinese poem (left),  degrade by 
AWGN (middle),  recovered with (21, 16, 3) Hamming 
encoding/decoding (right)
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% to demo performance of (21, 16, 3)Hamming 
code, which shortened from (31, 26, 3) Hamming 
code.|<--10 bits for parity check -->|<--16 
bits for info-->|<--5 zero bits padded-->|

clear

fid = fopen('杜甫詩.txt','r');

A = fread(fid); % A is an array of integers

S = char(A'); % to chinese character

SNR = 6 ;   % 6dB = SNR = 10log(Eb/No) = 
10log(signal_pw/(code_rate*2* 
noise_var)) ,assume signal_pw = 1

noise_var = 1/(2*code_rate*10^(SNR/10));

D = max(size(A));  % D must be even

tt = 1;   % correct 1 bit errors
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Dmin = 2*tt+1; % minimum Hamming ditance

for i=1:1:D 

for j=1:1:8   % to get all bits in A

MSG(i,j) = bitget(A(i),j);

end

end

j = 1;

for i=1:2:D

U(j,:) = [MSG(i,:), MSG(i+1,:), 
zeros(1,10)];

j = j+1;

end
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M = 5;

NN = 2^M-1;

KK = NN-M;

V = encode(U,NN,KK,'hamming'); 

% Hamming(31,26,3) encoder 

for i=1:1:D/2

r(i,:) = -2*V(i,1:21)+1 + sqrt(noise_var)*  
randn(1,21); 

% the shorten Hamming code is transmitted 
with length 21 and information 16 bits

% olny first 21 bits are fetched.

end
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for i=1:1:D/2

for j=1:1:21

if(r(i,j) > 0) y(j) = 0;                 
% hard decision output

else y(j) = 1;

end

end 

Y(i,:) = [y, zeros(1,10)];

end

U_hat = decode(Y,NN,KK,'hamming');         
% hamming(31,26,3) decoder
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for i=1:1:D/2

b(2*i-1,:) = Y(i, 6:13); % disregard 
parity check bits and only the 16 info. bits 
are fetched

b(2*i,:) = Y(i, 14:21);

MSG_hat(2*i-1,:) = U_hat(i,1:8); %the info. 
16 bits are fetched

MSG_hat(2*i,:) = U_hat(i,9:16);

end

for i=1:1:D

B(i) = Bits2num(b(i,:),8);

C(i) = Bits2num(MSG_hat(i,:),8);  %the 
info. Bits

end
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fid2 = fopen('杜甫詩(AWGN雜訊干擾).txt','w');

fid3 = fopen('杜甫詩(Hamming decoded).txt','w');

fprintf(fid2,'%c',char(B));

fprintf(fid3,'%c',char(C));

fclose('all');
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HW #4-1

1. In the previous MATLAB program, we  encode each 
Chinese character with Hamming encoding.

2. Now, for some reason, we would like to encode this file 
“杜甫詩.txt” with Hamming encoding by the line-by-line 
way. Please modify this program and adjust the SNR 
such that there are no errors in the “decoded file”. 

3. What kind of the shortened Hamming code is used ?
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