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1. Definition

e An (n, k) linear code C is called a cyclic code if any cyclic
shift of a codeword is another codeword. That Is, iIf
V=(Vy,Vy, Vs,V 4)
IS a codeword In C, then

—(1)
Vo= (Vg Vo Vi Ve Vo p)

obtained by shifting v cyclically one place to the right is
another codeword.

e Cyclic structure makes the encoding and syndrome
computation very easy.

e Cyclic codes have considerable algebraic and geometric
structure. As a result, it Is possible to devise various
simple and efficient methods for decoding them.



2. Generator Polynomial

e Every codeword v = (v,,v,,v,,...,v, ,) inan (n, k) cyclic
code C can be uniquely represented by a polynomial of
degree n -1 or less with binary coefficients as follows:

V(X)=V, +V, X +V,X*+---4+v X"
ev(X) Is called a code polynomial.
e The correspondence between v and V(X) is one-to-one.

e Every nonzero code polynomial V(X )in C must have
degree at least n - k but not greater than n-1.

e There exists one and only one nonzero code polynomial
of degree n - k of the following form:

g(X)=1+gX+9g,X°+..+0, X"+ X"

n—-k-1



e g(X) is the nonzero code polynomial of the lowest
degree.

e Every code polynomial V(X) is divisible byd(X) ,i.e., a
multiple of g(X).
e Furthermore, every polynomial of degree n-1 or less

with binary coefficients that is divisible by 9(X) (or a
multiple of 9(X)) is a code polynomial.

e Hence the (n, k) cyclic code C is completely specified
by the code polynomial 9(X)

e This code polynomial 9(X) s called the generator
polynomial of the code.



Example 4.1: Table 4.1 gives a (7, 4) cyclic code with generator
polynomial g(X)=1+ X + X° Table 4.1

Message Code Vectors Code Polynomials
0000) 0000000 0=0-g(X)
(1000) 1101000 1+ X + X°=1-g(X)
(0100) 0110100 X+ X2+ X*=X-g(X)
(1100) 1011100 1+ X2+ X3P+ X =@+ X)-g(X)
(0010) 0011010 X2+ X7+ X°=X?-g(X)
(L010) 1110010 I+ X + X2+ X° =1+ X?)-g(X)
(0110) 0101110 X+XP4+ X+ X =(X +X?)-g(X)
(1110) 1000110 I+ X+ X =1+ X +X?)-g(X)
(0001) 0001101 X2+ X"+ X=X?g(X)
(1001) 1100101 I+ X + X+ X =1+ X?)-g(X)
0101) 0111001 X+ X2+ X+ X =(X+X%)-g(X)
(11 01) 1010001 1+ X2+ X =1+ X + X%)-g(X)
(0011) 0010111 X2 XA+ X+ X =(X2+ X%)-g(X)
(L011) 1111111 I+ X + X2+ X+ X+ X+ X =1+ X*+ X%)-g(X
(0111) 0100011 X+X+X=(X+X*+X))-g(X)
(1111) 1001011 1+ X2+ X2+ X =1+ X + X+ X®)-g(X)
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3. Encoding

e Consider an (n, k) cyclic code C with generator
polynomial g(X)

e Suppose ¢ =(c,,¢C;,...,C, ;) isthe message to be encoded.
e Represent with a polynomial of degree k-1 or less,

c(X)=c,+c X' +...+C X
e Multiplying c(X) by X"k we obtain
X"™e(X)=c, X"+, X"+ ... +c X"
e Dividing X™kc(X) by 9(X), we have
X "*e(X) =a(X)g(X)+b(X)

where b(X)=b,+bX +...+b_ X" " Isthe
remainder.



e Then b(X)+ X"*c(X)=a(X)g(X) isamultiple of
g(X) and c(X) hasdegreen-1. Hence itis the
code polynomial for the message

e Note that

v(X)=b(X)+ X" *c(X) =
b, +b, X +---+b X"

. J/

parity Eﬁeck bits

+C X" e, X" g XM

Y -
message bits

=a(X)g(X)



e The code polynomial is in systematic form where b(X)
IS the parity-check part.

e The encoding can be implemented by using a division
circuit which i1s a shift register with feed-back
connections based on the generator polynomial g(X) as
shown in Figure 4.1.
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g(X)=1+gX +9,X*+...4+0

n—-k-1

X n—-k-1 + X n—k

! Gate |«—
@ On-k-1
10y D1 by =D b, e Bp.ieq (1P
Message Xk c(X)- il Wg)odeworcfl
Parity-
check digits

Figure 4.1 An encoding circuit for an (n, k) cyclic

code
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Example 4.2: Figure 4.2 shows the encoding circuit of the
(7, 4) cyclic code give by Table 4.1 generated by

g(X)=1+ X+ X"

? Gate

'
e
"D

T@ Parity-check digits

—)—>0
V?<o

Message X"k ¢c(X) o ‘Codeword

Figure 4.2 Encoder for the (7,4) cyclic code generated by
g(X)=1+ X + X°
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Table 4.1 Given ¢(X)=1+ X" | then the output code
polynomial is V(X)=X"+ X+ X*+ X

timing Register contents Input bits
0 (Gate on) 0,0,0 (initial)
1 (Gate on) 0,0,0 1 (X5
2 (Gate on) 1,1,0 0 (X0
3 (Gate on) 0,1,1 0 (X%
4 (Gate on) 1,1,1 1 (X3

5 (Gate on ->0ff) 0,1,1 (to read parity check bits)
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4. Parity Polynomial

e The generator polynomial g(X) of an (n, k) cyclic code
divides the polynomial X"+ 1, I.e.,

X" +1=g(X)h(X)

e The polynomial h(X) is called the parity polynomial
and has the following from:

h(X)=1+hX +hX*+...+h X"+ X"

e Encoding can be done based on h( X)

e An encoding circuit based on h(X) is shown in Figure
4.3.
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T\, M any -
N % N N
Gate 2 h,. h,. h, h,
— Gate 1 o oo

Input

Output to channel

Figure 4.3 Encoding circuit for an (n, k) cyclic code based
on the parity polynomial h(X)=1+hX +...+ X"
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Example 4.3: Consider the (7, 4) cyclic code with generator
polynomial g(X)=1+ X + X° . The parity polynomial of
this code Is

h(X) = (X7 +D) /(X + X +1)
=1+ X +X?+X*

The encoding circuit based on h(X) is shown in Figure
4.4,
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T
%
S
%

Gate 2

— Gate 1 —@—
Input

A 4

.

Output to channel

Figure 4.4 Encoding circuit for the (7, 4) cyclic code based
on its parity polynomial h(X)=1+ X + X* + X*
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Table 4.2 Given ¢(X)=1+ X" then the output code
polynomial is V(X)= X"+ X’ + X* + X

Timing Input bits  Register contents Output bits
0, Glon G2off 0,0,0,0(initial)
1, Glon G2off 1 (X5 0,0,0,0 1 (X9
2, Glon G2off 0  (XO) 1,0,0,0 0 (X
3,Glon G2off 0 (X9 0,1,0,0 0o (X9
4, Glon G2off 1  (X3) 0,0,1,0 1 (X9
5, Gloff G2on 1,0,0,1 1 (X9
6, Gloff G20n 1,1,0,0 1 (XY
7, Gloff G2on 1,1,1,0 0 (X9

18



5. Existence of Cyclic Codes

e For any n and k, is there an (n, k) cyclic code ?

e If g(X) is a polynomial of degree n-k and a factor of X" +
1, then g(X) generates an (n, k) cyclic.

e As a matter of fact, any factor g(X) of X"+ 1 with
degree n - k generates an (n, k) cyclic code.

e For large n, X" + 1 may have many factors of degree n - k.
Some generate good codes and some generate bad codes.

Example 4.4: The polynomial X’ + 1 can be factored into
the following product of irreducible polynomials:

XT+1=(1+X)(1+X+X3)(1+X+X3)
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(1)9.(X) =1+ X + X3 generates the (7, 4) cyclic code
given by Table 4 .1.

(2)9,(X) =1+ X2 +X2 generates the (7, 4) cyclic code .

(3)%(X)=(1+X )(1+X+X3)=1+X2+ X3+ X4
generates the (7, 3) cyclic code.
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6. Irreducible Polynomial

e A binary polynomial of degree m is said to be irreducible
If it Is not divisible by any binary polynomial of degree
less than m and greater then zero.

ol +X+X, 1 +X+X3,1+X+X*,1+X2+X>are
iIrreducible polynomials.

e For any positive integer m > 1, there exists at least one
Irreducible polynomial of degree m.

e An irreducible polynomial P(X) of degree m is said to be
primitive if the smallest positive n for which P(X)
divides X"+ 1lisn=2m-1.

e For any positive integer m, there exists a primitive
polynomial of degree m.
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7. Cyclic Hamming Codes

e A cyclic Hamming code is generated by a primitive
polynomial.

e The cyclic Hamming code generated by a primitive
polynomial p(X) of degree m has the following
parameters:

n=2"-1, k=2"-m-1, m=n-k, d;=3, t=1

e The (7, 4) cyclic code in Table 4.1 is a cyclic Hamming
code generated by the primitive polynomial p(X)=1+ X + X’

e The primitive polynomial p(X)=1+ X + X* generates a
(15, 11) cyclic Hamming code.
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Distance-4 Cyclic Hamming Codes
e It is generated by g(X)=(X +1)p(X) .
e It is subcode of the distance-3 cyclic code generated by p(X)
e |t consists of only the even weight codewords.

e |t IS capable of correcting any single error and detecting
any double errors.

e |t is widely used for error control.

23



8. Syndrome Computation and Error
Detection

e Syndrome computation for cyclic codes is easy.

e Let V(X) and r(X) be the transmitted code polynomial
and received polynomial respectively.

e Dividing r(X) by the generator polynomial 9(X) , we

have
r(X)=a(Xx)g(X)+s(X)

where

s(X)=s,+5X +..+5_ X"

IS the remainder.

24



e Since V(X) is a code polynomial, then v(X)=c(X)-g(X)
e Consequently,

e(X)=[a(X)+c(X)Ig(X) +s(X)

e \We see that the syndrome is actually the remainder
resulting from dividing the error polynomial e(X).

25



r(x)

g(X)=1+g X +g,X°+..+¢Q

n—

k-1

X n—-k-1 + X n-k

é}—b

Recelved

vector

Gatef*

Sn-k-l

Figure 4.5 An (n-k) stage syndrome circuit




Example 4.5: A syndrome circuit for the (7, 4) cyclic code
generated by g(X)=1+ X+ X" . Suppose that the received
vector r=(0010110). The syndrome of  is s=(101)

Gatef*

r(x) . |
Recelved

vector

Figure 4.5.1 An syndrome circuit for the (7, 4)
cyclic code generated by g(X)=1+ X + X°

27



Table 4.3 As r=(0010110) , the contents of the

syndrome register

timing

Input

Register contents

~N O O B WO N - O

0

o O r Ok Bk

0,0,0 (initial)
0,0,0
1,0,0
1,1,0
0,1,1
0,1,1
1,1,1
1,0,1(syndrome)
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HW #5

1.Consider the (15, 11) cyclic Hamming code generated by
g(X)=1+X +X*
(a) Determine the parity polynomial h(X).

(b) Given c(X)=1+ X" then what is the output code
sequence ?

2. Devise an encoder and a syndrome circuit for Problem 1.
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9. Burst Error Detection with Cyclic
Codes

e |n certain channels, errors occur in clusters.
e A cluster of errors is called an error burst.

e An error burst is said to have length 1 if all the errors are
confined to | consecutive positions.

e For example,e = (00001101000) is an error burst of
length 4.

e Using polynomial representation, an error burst of
length | has the following form:

e(X)=X'"(l+e X +..+e_ X+ X'

I+1—
where X'and X' *!-1are the beginning and ending of the

burst.
30



e For| <n—k , we see that no error burst is divisible by
the generator polynomial 9(X) . Hence its syndrome is
nonzero.

e An (n, k) cyclic code is capable of detecting any burst of
length n —k or less ( including the end-around burst ).

e |n fact, a large percentage of error bursts of length n — k +
+1 or longer can be detected.

e For burst length | = n -k + 1, the fraction of undetectable

error bursts Is 5-(n-k-1)

e For burst length | > n -k + 1, the fraction of undetectable

error bursts 1s
2—(n—k)

e Cyclic codes are very effective in detecting error bursts.
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10. Decoding of Cyclic Codes

e Consists of the same 3 steps as for decoding linear codes
syndrome computation, association of the syndrome to a
correctable error pattern, and error correction.

e The cyclic structure allows us to decode a received vector
r(X)=r,+rX+...+r_X"

In serial manner, one bit at a time from the high order to
the end.

e Each received bit is decoded with the same circuitry.
e A general cyclic code decoded is shown in Figure 4.6.
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r(X) ‘ _ L
| . Multiplexer — Buffer register —D g
Received tCorrected
vector . i vector
Gote Feedback connection Gate |
Q + Syndrome register
Error pattern detection | €& "~ |
circuit

Figure 4.6 General cyclic code decoder
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Decoding Process

e Shift the received polynomial T(X) into a buffer and the
syndrome registers simultaneously.

e Check whether the syndromes s(X) corresponds to a
correctable error pattern

e(X)=¢,+eX +..+e X"
with an error at the highest-order position X"*(ie.e_, =1)
e Correct r,, If e, =1.

e Cyclically shift the buffer and syndrome registers once
simultaneously. Now the buffer register contains

rX)=(r_,+e )+rX+..+r X"
and the syndrome register contains the syndrome

sY(X) of r®(X)
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e Check whether s”(X) corresponds to a correctable
error pattern € (X) with an error at the highest-order
position X1,

e Correct r_, Ifitiserroneous.

e Repeat the same process until n shifts.

o |f the error pattern is correctable, the buffer register
contains the transmitted codeword and the syndrome
register contains zeros.

e |f the syndrome register does not contain all zero at the
end of decoding process, an uncorrectable error pattern
has been detected.
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11. Decoding of Hamming codes

e Consider the (7, 4) Hamming code generated by
g(X)=1+X + X’
e The code Is capable of correcting any single error over a
span of 7 bits.
e The error pattern with an error at the highest order bit
position is
e(X)= X"
e The syndrome corresponding to this error pattern is the

remainder resulting from dividing X° by the generator
polynomial.

—(X3+X+1)(X3+X+1)+(X +1)

Quotlent g (X ) Re malnder
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o If the error pattern is error-free, the buffer register contains
the transmitted codeword and the syndrome register contains
an all-zero vector.

e |f the syndrome register contains a non-zero vector at the
decoding process, an uncorrectable/correctable error pattern
has been detected.

e Hence the syndrome of €(X) = X" is
s(X)=X? or s=(001)

e |n the decoding process, we check the syndrome in the
syndrome register. If the syndrome is (001), the second order
bit in the buffer register is erroneous and must be corrected.

e The entire decoding circuit is shown in Figure 4.7.
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r(X) ' r'(X)
» Multiplexer ()
Input Buffer register Output
Gate 1 L Gate 2
><A> > SO 4V Sl > S2
Gate 3
v

Figure 4.7 Decoding circuit for the (7, 4) cyclic
code generated by g(X)=1+ X + X’
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Table 4.4 The error pattern shifted into the syndrome register

Error pattern Syndrome Syndrome vector
e(X) S(X) (50,51, 5,)
e(X)=X° s(X)=1+ X" (1,0,1)
e(X)=X?®  S(X)=1+X+X" (1,1,1)
e(X)=X" s(X)=X + X~* (0,1,1)
e(X)= X"’ s(X)=1+ X (1,1,0)
e(X)=X"* s(X)=X"* (0,0,1)
e(X)=X" s(X) = X (0,1,0)
e(X)=X" s(X)=1 (1,0,0)
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Example 4.6: The complete decoding circuit is shown in
Figure 4.7. Figures 4.8 - 4.9 illustrate the decoding process.
Suppose that the transmitted vector is

v = (1001011)
v(X)=1+X>+ X+ X°
The recelved sequence Is

r =(1011011)

A single error occurs at location X2, when the entire received
polynomial has been shifted into the syndrome registers( Gates
1 and 2 are on, as Gate 3 Is off during the initial process), the
syndrome content is (001). Then, the Gate 1 is off and Gates 2
and 3 are on in the following decoding process. The decoding
process is shown in the following figure.
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initial | 0/ 0 |1

,_\
R
o
=
=
o
=
\%Fo ﬂL\‘_

1stshift | 1/ 110

0

| |

ond shift [ 0 1 |1 t1]1]of1]1]o}—C
0

| |
3rd shift [ 1] 1 11 0/2]1]2]0[1]1]—(D

Figure 4.8 Error correction process
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4th shift

5th shift

6th shift

7th shift

‘_

—

b

" o

()

1 L

Figure 4.9 Error correction process (continuous)
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12. Shortened Cyclic Codes

e |n system design, often we have to shorten a code to meet
the system requirements.

e Consider an (n, k) cyclic code with generator polynomial
g(X)
¢ \We can shorten the message and code length by | bits to
obtain an (n - I, k - 1) shortened cyclic code. The code
consists of all the code polynomials of degreen -1 -1

which are multiples of degree n - | -1 which are multiples
of g(X).

elet c(X)=c,+CX +...+C_,, X" bethe message to
be encoded.
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e Dividing X"*c(X) by 9(X), we have
X" c(X) = a(X)g(X)+b(X)

e Then b(X)+ X"*c(X) is the code polynomial for C(X)

e Since9(X) may not divide X" + 1, the shortened cyclic
code may not be cyclic.

e However, encoding and decoding of a shortened cyclic
code Is the almost same as that for the original cyclic code.
We simply view that the | leading message bits are zero.

e A shortened cyclic code has at least the same error
correcting capability as the original code.
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r(x)

Input

.

ull,,

CAND

Figure 4.10 Decoding circuit for the (31, 26) cyclic

Hamming code generated by g(X)=1+ X*+ X°

" Gate " 31-bit buffer register <> ]
Output
- Gate
MR
Gate f——p
ALY
B e
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r(X)

- Gate ~ 28-bit buffer register > >
Input | Output

» Gate

-
Y

Gate |«

VAR
AN

[EN=EEE

i v L 3 0
_AND_J

Gate

Figure 4.11 Decoding circuit for the (28, 23) shortened
cyclic Hamming code generated by g(X) =1+ X?* + X°®
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13. Important Cyclic Codes

e Hamming codes.

e BCH ( Bose — Chaudhuri — Hamming ) codes- A large
class of powerful multiple random error-correcting codes,
rich in algebraic structure, algebraic decoding algorithms
available.

e Golay (23, 12) code — a perfect triple error correcting
code, widely used and generated by

0,(X)=1+ X + X2+ X*+ X+ X°®+ X + X"
or

g,(X)=1+X + X°+ X°+ X"+ X° + X"
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Finite geometry codes — construction based on finite
projective or Euclidean geometries, less efficient than
BCH codes but much easier to decode.

Reed-Solomon codes — nonbinary, correcting symbol
errors or burst errors, most widely used for error control In
data communications and data storage.

Fire codes — burst — error correcting codes, easy to
Implement, widely used in magnetic disks for error control

Computer generated codes — mainly for correcting bursts
of errors.
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14. Good Error Detection Cyclic
Codes

e An (n, k) linear block code is said to be good for error
detection If its probability of an undetected error P, (E) Is
upper bounded as follows:

P, o(E) < 209

e Cyclic codes which have been proved to be good for error
detection are:

(1) Hamming codes.

(2) Golay (23, 12) code.

( 3) Distance 5 — 8 primitive BCH codes.

(4 ) Reed — Solomon codes in nonbinary case and
Pg(E) <q-(n-H),

where ¢ Is the size of code alphabet.
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15. The CCITT X. 25 Code

e It Is a distance — 4 cyclic Hamming code with 16 parity
check bits for error detection for packet switched data
networks.

e |t IS generated by the polynomial
g, (X) =0+ X)X+ X*+ XP+ X+ X+ XP+ X2+ X +1)
=X*+ X"*+X*+1
or
g,(X)=(X +D(X® + X*+1)=X"+ X"+ X +1

e The natural length of the code isn =2 -1 =32,767. It is
usually shortened to a fewer hundred to a few thousand
bits long.
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16. The IEEE Standard 802.3 Code

e A Hamming code with 32 parity bits generated by
,(X) = X4 X 4 XZ 4+ X% 4 X 4 X2 4 X5
FXO X2+ XTH XX+ X+ X +1

e Used in the Ethernet .
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HW #6

1. In Example 4.6, with the received sequence r= (1001010)
please illustrate the decoding steps.

2. Devise a decoding circuit for (7, 3) Hamming code

generated by g(X)=(X +1)(X°+X +1) . The
decoding circuits corrects all the single error patterns
and all the double-adjacent-error patterns.
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17. Error Correction Performance
and MATLAB Example

e In following figure, the comparison of error correction
performance of a shorten cyclic code is shown.

e The shortened cyclic code with length 26, dimension 16,
and minimum Hamming distance 5 is illustrated In
MATLAB for error correction. Each Chinese character is
constituted by 2 bytes (8-bit). This shortened cyclic code is
shorten from the (31, 21, 5) cyclic code.

e [or details, please download the file “Ctext-crc.zip” in “#
’EHEJ ,J\ ﬁ—fj”
l kI
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HW #6-1

1. Inthe previous MATLAB program, we encode each
Chinese character with a cyclic encoding.

2. Now, for some reason, we would like to encode this file
“FET ]n%.txt” with cyclic encoding by the line-by-line
way. And this code is with 2-error correction. Please
modify this program and adjust the SNR such that there
are no errors in the decoded file.

3. What kind of the shortened cyclic code is used ?
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