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1.   Definition
• An (n, k) linear code C is called a cyclic code if any cyclic 

shift of a codeword is another codeword. That is, if 

is a codeword in C, then 

obtained by shifting cyclically one place to the right is 
another codeword.

• Cyclic structure makes the encoding and syndrome 
computation very easy. 

• Cyclic codes have considerable algebraic and geometric 
structure. As a result, it is possible to devise various 
simple and efficient methods for decoding them.  
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2.  Generator Polynomial
• Every codeword                                    in an (n, k) cyclic 

code C can be uniquely represented by a polynomial of 
degree n -1 or less with binary coefficients as follows:

• is called a code polynomial. 
• The correspondence between       and           is one-to-one. 
• Every nonzero code polynomial         in C must have 

degree at least n - k but not greater than n-1. 
• There exists one and only one nonzero code polynomial

of degree n - k of the following form: 
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• is the nonzero code polynomial of the lowest 
degree. 

• Every code polynomial          is divisible by          , i.e. , a 
multiple of           . 

• Furthermore, every polynomial of degree n-1 or less 
with binary coefficients that is divisible by          ( or a 
multiple of           ) is a code polynomial.

• Hence the (n, k) cyclic code C is completely specified 
by the code polynomial          .

• This code polynomial           is called the generator   
polynomial of the code. 
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Message Code Vectors Code Polynomials
(0 0 0 0) 0 0 0 0 0 0 0

(1 0 0 0) 1 1 0 1 0 0 0

(0 1 0 0) 0 1 1 0 1 0 0 

(1 1 0 0) 1 0 1 1 1 0 0

(0 0 1 0) 0 0 1 1 0 1 0

(1 0 1 0) 1 1 1 0 0 1 0

(0 1 1 0) 0 1 0 1 1 1 0

(1 1 1 0) 1 0 0 0 1 1 0

(0 0 0 1) 0 0 0 1 1 0 1

(1 0 0 1) 1 1 0 0 1 0 1

(0 1 0 1) 0 1 1 1 0 0 1

(1 1  0 1) 1 0 1 0 0 0 1

(0 0 1 1) 0 0 1 0 1 1 1

(1 0 1 1) 1 1 1 1 1 1 1 

(0 1 1 1) 0 1 0 0 0 1 1

(1 1 1 1) 1 0 0 1 0 1 1

)(00 Xg⋅=
)(11 3 XgXX ⋅=++

)(42 XgXXXX ⋅=++
)()1(1 432 XgXXXX ⋅+=+++

)(2532 XgXXXX ⋅=++
)()1(1 252 XgXXXX ⋅+=+++

)()( 2543 XgXXXXXX ⋅+=+++
)()1(1 254 XgXXXX ⋅++=++

)(3643 XgXXXX ⋅=++
)()1(1 364 XgXXXX ⋅+=+++

)()( 3632 XgXXXXXX ⋅+=+++
)()1(1 362 XgXXXX ⋅++=++

)()( 326542 XgXXXXXX ⋅+=+++
)()1(1 3265432 XgXXXXXXXX ⋅++=++++++

)()( 3265 XgXXXXXX ⋅++=++
)()1(1 32653 XgXXXXXX ⋅+++=+++

Example 4.1: Table 4.1 gives a (7, 4) cyclic code with generator
polynomial Table 4.1

31)( XXXg ++=
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3. Encoding
• Consider an (n, k) cyclic code C with generator 

polynomial 
• Suppose                               is the message to be encoded. 
• Represent with a polynomial of degree k-1 or less, 

• Multiplying           by Xn-k , we obtain 

• Dividing Xn-k by           ,   we have 

where                                                    is the 
remainder. 
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• Then                                                           is a multiple of            
and               has degree n-1. Hence it is the 

code polynomial for the message           . 
• Note that 
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• The code polynomial is in systematic form where           
is the parity-check part. 

• The encoding can be implemented by using a division 
circuit which is a shift register with feed-back 
connections based on the generator polynomial           as 
shown in Figure 4.1.

)(Xg
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knkn
kn XXgXgXgXg −−−
−− +++++= 1
1

2
21 ...1)(

Codeword
b0 b1 b2 bn-k-1

Gate
g1 g2 gn-k-1

Message Xn-k

Parity-
check digits

)(Xc

Figure 4.1   An encoding circuit for an (n, k) cyclic 
code
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Example 4.2: Figure 4.2 shows the encoding circuit of the 
(7, 4) cyclic code give by Table 4.1 generated by 

Figure 4.2 Encoder for the (7,4) cyclic code generated by

31)( XXXg ++=

Gate

Message Xn-k

Parity-check digits

)(Xc Codeword

31)( XXXg ++=
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timing Register contents Input bits
0   (Gate on) 0,0,0 (initial)

1   (Gate on) 0,0,0 1     (X6)

2   (Gate on) 1,1,0 0     (X5)

3   (Gate on) 0,1,1 0     (X4)

4   (Gate on) 1,1,1 1     (X3)

5 (Gate on ->off ) 0,1,1 (to read parity check bits)

Table 4.1 Given                         ,  then the output code 
polynomial is 

31)( XXc +=
XXXXXv +++= 236)(
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4. Parity Polynomial

• The generator polynomial            of an (n, k) cyclic code 
divides the polynomial Xn + 1 , i.e.,

• The polynomial             is called the parity polynomial
and  has the following from:

• Encoding can be done based on          . 
• An encoding circuit based on              is shown in Figure 

4.3. 
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Figure 4.3    Encoding circuit for an (n, k) cyclic code based 
on the parity polynomial kXXhXh +++= ...1)( 1

Gate 2

Gate 1

hk-1 hk-2 h2 h1

Input

Output to channel
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Example 4.3: Consider the (7, 4) cyclic code with generator 
polynomial                               . The parity polynomial of  
this code is 

The encoding circuit based on              is shown in Figure 
4.4.
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Gate 2

Gate 1
Input

Output to channel

Figure 4.4    Encoding circuit for the (7, 4) cyclic code based 
on its parity polynomial 421)( XXXXh +++=
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Timing Input bits Register contents Output bits
0, G1on G2off 0,0,0,0(initial)

1       (X6)
0       (X5)
0       (X4)
1       (X3)
1       (X2)
1       (X1)
0       (X0)

1, G1on G2off 1       (X6) 0,0,0,0
2, G1on G2off 0       (X5) 1,0,0,0
3, G1on G2off 0       (X4) 0,1,0,0
4, G1on G2off 1       (X3) 0,0,1,0
5, G1off G2on 1,0,0,1
6, G1off G2on 1,1,0,0
7, G1off G2on 1,1,1,0

Table 4.2 Given                        ,  then the output code 
polynomial is 

31)( XXc +=
XXXXXv +++= 236)(
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5. Existence of Cyclic Codes

• For any n and k, is there an (n, k) cyclic code ?
• If           is a polynomial of degree n-k and a factor of Xn + 

1, then           generates an (n, k) cyclic. 
• As a matter of fact, any factor              of  Xn + 1 with 

degree n - k generates an (n, k) cyclic code. 
• For large n, Xn + 1 may have many factors of degree n - k. 

Some generate good codes and some generate bad codes. 

Example 4.4: The polynomial X7 + 1 can be factored into 
the following product of irreducible polynomials: 

X7 + 1 =  ( 1 + X ) ( 1 + X + X3 ) ( 1 + X2 + X3 )

)(Xg
)(Xg

)(Xg



20

( 1 )           = 1 + X + X3 generates the (7, 4) cyclic code 
given by Table 4 .1. 

( 2 )           = 1 + X2 +X3 generates the (7, 4) cyclic code . 
( 3 )           = ( 1 + X ) ( 1 + X + X3 ) = 1 + X2 + X3 + X4 

generates the (7, 3) cyclic code. 

)(1 Xg

)(2 Xg
)(3 Xg
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6. Irreducible Polynomial

• A binary polynomial of degree m is said to be irreducible 
if it is not divisible by any binary polynomial of degree 
less than m and greater then zero. 

• 1 + X + X2 , 1 + X + X3 , 1 + X + X4 , 1 + X2 + X5 are 
irreducible polynomials. 

• For any positive integer m 1 , there exists at least one   
irreducible polynomial of degree m. 

• An irreducible polynomial          of degree m is said to be 
primitive if the smallest positive n for which         
divides Xn + 1 is n = 2m – 1. 

• For any positive integer m, there exists a primitive 
polynomial of degree m. 

≥

)(Xp
)(Xp
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7. Cyclic Hamming Codes

• A cyclic Hamming code is generated by a primitive 
polynomial. 

• The cyclic Hamming code generated by a primitive 
polynomial             of degree m has the following 
parameters:    
n = 2m – 1,  k = 2m- m –1,  m = n – k,  dmin= 3,    t = 1

• The (7, 4) cyclic code in Table 4.1 is a cyclic Hamming 
code generated by the primitive polynomial

• The primitive polynomial                                 generates a 
(15, 11) cyclic Hamming code. 

41)( XXXp ++=

31)( XXXp ++=

)(Xp
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Distance-4 Cyclic Hamming Codes
• It is generated by                                     .
• It is subcode of the distance-3 cyclic code generated by 
• It consists of only the even weight codewords. 
• It is capable of correcting any single error and detecting 

any double errors. 
• It is widely used for error control. 

)()1()( XpXXg +=
(Xp )
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8. Syndrome Computation and Error 
Detection

• Syndrome computation for cyclic codes is easy.   
• Let            and           be the transmitted code polynomial

and received polynomial respectively. 
• Dividing          by the generator polynomial           ,   we 

have 

where

is the remainder. 
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• Since          is a code polynomial,  then
• Consequently,  

• We see that the syndrome is actually the remainder  
resulting from dividing the error polynomial         . 

)()()]()([)( XsXgXcXaXe ++=

)(Xv )()()( XgXcXv ⋅=
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knkn
kn XXgXgXgXg −−−
−− +++++= 1
1

2
21 ...1)(

s0 s1 sn-k-1

Gate

g1 g2 gn-k-1

)(Xr

Received 
vector

Figure 4.5 An (n-k) stage syndrome circuit
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Example 4.5: A syndrome circuit for the (7, 4) cyclic code 
generated by                                   .   Suppose that the received 
vector                            .  The syndrome of        is  

31)( XXXg ++=
)0010110(=r r )101(=s

Gate

)(Xr
Received 
vector

Figure 4.5.1 An syndrome circuit for the (7, 4) 
cyclic code generated by 31)( XXXg ++=



28

Table 4.3 As                           ,  the contents of the 
syndrome register 

)0010110(=r

timing input Register contents
0 0 0,0,0 (initial)
1 1 0,0,0
2 1 1,0,0
3 0 1,1,0
4 1 0,1,1
5 0 0,1,1
6 0 1,1,1
7 - 1,0,1(syndrome)
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HW #5

1.Consider the (15, 11) cyclic Hamming code generated by 

(a) Determine the parity polynomial           .    

(b) Given                      , then what is the output code 
sequence ?      

2. Devise an encoder and a syndrome circuit for Problem 1. 

21)( XXc +=

)(Xh

41)( XXXg ++=
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9. Burst Error Detection with Cyclic 
Codes

• In certain channels, errors occur in clusters. 
• A cluster of errors is called an error burst. 
• An error burst is said to have length l if all the errors are 

confined to l consecutive positions. 
• For example,                                   is an error burst of 

length 4. 
• Using polynomial representation, an error burst of   

length l has the following form: 

where Xi and Xi + l – 1 are the beginning and ending of the 
burst. 

)00000110100(=e
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• For                 , we see that no error burst is divisible by 
the generator polynomial           . Hence its syndrome is 
nonzero. 

• An (n, k) cyclic code is capable of detecting any burst of 
length n – k or less ( including the end-around burst ). 

• In fact, a large percentage of error bursts of length n – k + 
+1 or longer can be detected. 

• For burst length l = n – k + 1, the fraction of undetectable
error bursts is 

• For burst length l > n – k + 1, the fraction of undetectable
error bursts is 

• Cyclic codes are very effective in detecting error bursts. 

knl −≤

)1(2 −−− kn

)(2 kn−−

)(Xg
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10. Decoding of Cyclic Codes

• Consists of the same 3 steps as for decoding linear codes 
syndrome computation, association of the syndrome to a 
correctable error pattern, and error correction. 

• The cyclic structure allows us to decode a received vector 

in serial manner, one bit at a time from the high order to 
the end. 

• Each received bit is decoded with the same circuitry. 
• A general cyclic code decoded is shown in Figure 4.6. 

1
110 ...)( −
−+++= n

n XrXrrXr
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Buffer register

Gate Gate

Gate

Syndrome register

Feedback connection

Error pattern detection  
circuit

Received 
vector

Corrected 
vector

ir

ie

Multiplexer
)(Xr

Figure 4.6    General cyclic code decoder
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Decoding Process 
• Shift the received polynomial           into a buffer and the 

syndrome registers simultaneously. 
• Check whether the syndromes          corresponds to a 

correctable error pattern 

with an error at the highest-order position
• Correct   rn-1 if   en-1   = 1.
• Cyclically shift the buffer and syndrome registers once 

simultaneously. Now the buffer register contains 

and the syndrome register contains the syndrome 

1
110 ...)( −
−+++= n

n XeXeeXe
)1.,.( 1

1 =−
−

n
n eeiX

1
2011

)1( ...)()( −
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• Check whether              corresponds to a correctable 
error pattern              with an error at the highest-order 
position Xn-1. 

• Correct  rn-2 if it is erroneous. 
• Repeat the same process until n shifts. 
• If the error pattern is correctable,  the buffer register 

contains the transmitted codeword and the syndrome 
register contains zeros. 

• If the syndrome register does not contain all zero at the 
end of decoding process, an uncorrectable error pattern 
has been detected. 

)()1( Xe
)()1( Xs



36

11. Decoding of Hamming codes
• Consider the (7, 4) Hamming code generated by

• The code is capable of correcting any single error over a  
span of 7 bits.   

• The error pattern with an error at the highest order bit 
position is 

• The syndrome corresponding to this error pattern is the 
remainder resulting from dividing X6 by the generator 
polynomial.

31)( XXXg ++=

6)( XXe =

434214342143421
mainderXgQuotient

XXXXXX
Re

2

)(

336 )1()1()1( ++++++=
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• If the error pattern is error-free, the buffer register contains 
the transmitted codeword and the syndrome register contains 
an all-zero vector. 

• If the syndrome register contains a non-zero vector at the 
decoding process, an uncorrectable/correctable error pattern 
has been detected. 

• Hence the syndrome of                      is

• In the decoding process, we check the syndrome in the 
syndrome register. If the syndrome is (001), the second order 
bit in the buffer register is erroneous and must be corrected. 

• The entire decoding circuit is shown in Figure 4.7.

2)( XXe =
2)( XXs = )001(=sor
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Multiplexer

Figure 4.7 Decoding circuit for the (7, 4) cyclic 
code generated by    31)( XXXg ++=

s0 s1 s2

Gate 1 Gate 2

Gate 3

Buffer registerInput Output

)(Xr )(' Xr
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Table 4.4 The error pattern shifted into the syndrome register 

Error pattern Syndrome Syndrome vector
(s0, s1, s2)
(1,0,1)

(1,1,1)

(0,1,1)

(1,1,0)

(0,0,1)

(0,1,0)

(1,0,0)

)(Xe )(Xs
6)( XXe =
5)( XXe =
4)( XXe =
3)( XXe =
2)( XXe =
1)( XXe =
0)( XXe =

21)( XXs +=
21)( XXXs ++=

2)( XXXs +=
XXs +=1)(
2)( XXs =

XXs =)(
1)( =Xs
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Example 4.6:  The complete decoding circuit is shown in 
Figure 4.7.  Figures 4.8 - 4.9 illustrate the decoding process. 
Suppose that the transmitted vector is

)1001011(=v
6531)( XXXXv +++=

The received sequence is

)1011011(=r
A single error occurs at location  X2, when the entire received 
polynomial has been shifted into the syndrome registers( Gates 
1 and 2 are on, as Gate 3 is off during the initial process), the 
syndrome content is (001). Then, the Gate 1 is off and Gates 2 
and 3 are on in the following decoding process. The decoding 
process is shown in the following figure.
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1   0   1   1   0   1   1  

0

0   0   1initial

1   1   0   1   1   0   1  

0

1   1   01st shift

1   1   1   0   1   1   0  

0

0   1   12nd shift

0   1   1   1   0   1   1  

0

1   1   13rd shift

Figure 4.8 Error correction process 
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1   0   1   1   1   0   1  

1

4th shift 1   0   1

0   1   0   1   1   1   0  

0

5th shift 0   0   0

0   0   1   0   1   1   1  

0

0   0   06th shift

1   0   0   1   0   1   1  

0

0   0   07th shift

Figure 4.9 Error correction process (continuous) 
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12. Shortened Cyclic Codes

• In system design, often we have to shorten a code to meet 
the system requirements. 

• Consider an (n, k) cyclic code with generator polynomial 
.

• We can shorten the message and code length by l bits to 
obtain an (n - l, k - l) shortened cyclic code. The code 
consists of all the code polynomials of degree n - l -1 
which are multiples of  degree n - l -1 which are multiples 
of           .

• Let                                                            be the message to 
be encoded. 

)(Xg

)(Xg
1

110 ...)( −−
−−+++= lk

lk XcXccXc
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• Dividing                    by           , we have 

• Then                                  is the code polynomial for 
• Since              may not divide Xn-l + 1, the shortened cyclic 

code may not be cyclic. 
• However, encoding and decoding of a shortened cyclic 

code is the almost same as that for the original cyclic code. 
We simply view that the l leading message bits are zero. 

• A shortened cyclic code has at least the same error 
correcting capability as the original code.

)()( XcXXb kn−+
)(Xg

)(Xg

)()()()( XbXgXaXcX kn +=−

)(XcX kn−

)(Xc
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)(Xr

Output
Gate 31-bit buffer register

Gate

Gate

AND

Input

Figure 4.10 Decoding circuit for the (31, 26) cyclic 
Hamming code generated by 521)( XXXg ++=
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)(Xr

Output
Gate 28-bit buffer register

Gate

Gate

AND

Input

Gate

Figure 4.11 Decoding circuit for the (28, 23)  shortened 
cyclic Hamming code generated by 521)( XXXg ++=
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13. Important Cyclic Codes

• Hamming codes. 
• BCH ( Bose – Chaudhuri – Hamming ) codes- A large 

class of powerful multiple random error-correcting codes, 
rich in algebraic structure, algebraic decoding algorithms 
available.

• Golay (23, 12) code – a perfect triple error correcting   
code, widely used and generated by 

or

11106542
1 1)( XXXXXXXXg +++++++=

119765
2 1)( XXXXXXXg ++++++=
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• Finite geometry codes – construction based on finite 
projective or Euclidean geometries, less efficient than 
BCH codes but much easier to decode. 

• Reed-Solomon codes – nonbinary, correcting symbol 
errors or burst errors, most widely used for error control in 
data communications and data storage. 

• Fire codes – burst – error correcting codes, easy to 
implement, widely used in magnetic disks for error control

• Computer generated codes – mainly for correcting bursts 
of errors. 



49

14. Good Error Detection Cyclic 
Codes 

• An (n, k) linear block code is said to be good for error 
detection if its probability of an undetected error Pud (E) is 
upper bounded as follows:

Pu d(E) ≤ 2 - (n - k)

• Cyclic codes which have been proved to be good for error 
detection are:

( 1 ) Hamming codes. 
( 2 ) Golay (23, 12) code. 
( 3 ) Distance 5 – 8 primitive BCH codes. 
( 4 ) Reed – Solomon codes in nonbinary case and 

Pu d(E) ≤ q - ( n - k),
where q is the size of code alphabet. 
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15. The CCITT X. 25 Code

• It is a distance – 4 cyclic Hamming code with 16 parity  
check bits for error detection for packet switched data 
networks. 

• It is generated by the polynomial

or

• The natural length of the code is n = 215 – 1 = 32,767. It is 
usually shortened to a fewer hundred to a few thousand 
bits long. 

1
)1)(1()(

51216

23412131415
1

+++=

+++++++++=

XXX
XXXXXXXXXXg

1)1)(1()( 14161415
2 +++=+++= XXXXXXXg
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16. The IEEE Standard 802.3 Code

• A Hamming code with 32 parity bits generated by

• Used in the Ethernet . 

1
)(

2457810

11121622232632
1

++++++++

++++++=

XXXXXXX
XXXXXXXXg
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HW #6

1. In Example 4.6, with the  received sequence             
please illustrate  the decoding steps.

2. Devise a decoding circuit for (7, 3) Hamming code 
generated    by                                           .   The 
decoding circuits corrects all the single error patterns 
and all the double-adjacent-error patterns. 

)1)(1()( 3 +++= XXXXg

)1001010(=r
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17. Error Correction Performance 
and MATLAB Example

• In following figure, the comparison of error correction 
performance of a shorten cyclic code  is shown.

• The shortened cyclic code with length 26, dimension 16, 
and minimum Hamming distance 5 is illustrated in 
MATLAB for error correction. Each Chinese character is 
constituted  by 2 bytes (8-bit). This shortened cyclic code is 
shorten from the (31, 21, 5) cyclic code.

• For details, please download the file “Ctext-crc.zip” in “老
胡小舖”
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烽佐連三月

家書岳萬金

白頭騷更短

渾欲不簪

國?氏沿在城春
草木深感時花
濺淚-恨別鳥驚

心

烽火連三月

家書抵萬金

白頭騷更短

渾欲不勝簪

國破山河在

城春草木深

感時花濺淚

恨別鳥驚心

烽火連三月

家書抵萬金

白頭騷更短

渾欲不勝簪

國破山河在

城春草木深

感時花濺淚

恨別鳥驚心

.

Figure 4.12: the original Chinese poem (left),  degraded by 
AWGN (middle),  recovered with (26, 16, 3) cyclic 
encoding/decoding (right)
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HW #6-1

1. In the previous MATLAB program, we  encode each 
Chinese character with a cyclic encoding.

2. Now, for some reason, we would like to encode this file 
“杜甫詩.txt” with cyclic encoding by the line-by-line 
way. And this code is with 2-error correction. Please 
modify this program and adjust the SNR such that there 
are no errors in the decoded file. 

3. What kind of the shortened cyclic code is used ?
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