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1. Introduction

• BCH ( Bose – Chaudhuri – Hocquenghem ) codes 
form a large class of multiple random error-correcting 
codes. 

• They were first discovered by Hocquenghem in 1959, 
and independently by Bose and Chaudhuri in 1960. 

• They are cyclic codes. 

• They are constructed based on Galois fields. 
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2 . Primitive BCH Codes

• For any integers m≥3 and t < 2m-1,  there exists a 
primitive BCH code with the following parameters:

n = 2m –1

n – k ≤ mt

dmin ≥ 2t + 1

• This code is capable of correcting t or fewer random 
error over a span of 2m –1  bit positions. 

• The parameter t is called the designed error-
correcting capability and the parameter  2t+1 is called 
the designed minimum distance. 
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• For example, for m = 6 and t = 3, there exists a 
BCH code with 

n = 26-1 = 63
n – k ≤ 6 × 3 =18
dmin ≥ 2 × 3 + 1 = 7

The code is a triple-error-correcting (63, 45) BCH 
code. 
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3. Generator Polynomial

• Let α be a primitive element in Galois field GF(2m). 

• For 1 ≤ i ≤ t, let φ2i-1(X) be the minimum polynomial
of the field element α2i-1.

• The degree of φ2i-1(X) is m or a factor of m.

• The generator polynomial           of a  t-error-
correcting primitive BCH code of length 2m – 1 is 
given by

)(Xg

(1))}(),(),({)( 1231 XXXLCMXg t−= φφφ L
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• Note that the degree of           is mt or less. Hence the 
number of parity-check bits, n – k, of the code is at 
most mt.

Example 1: Let m = 4  and  t = 3. Let α be a primitive 
element in GF(24) which is constructed based on the 
primitive polynomial                             .  The 
minimum polynomials of α, α3 and α5 are:

φ1(X) = 1 + X + X4

φ3(X) = 1 + X + X2 + X3 + X4

φ5(X) = 1 + X + X2

)(Xg

41)( XXXp ++=
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Hence the generator polynomial of the triple-error-
correcting BCH code of length n = 24 – 1 = 15 is 

The code is a (15, 5) cyclic code. 

108542
531

531

1

)()()(
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=
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Example 2: Let m = 6 and t = 5. Let α be a primitive 
element in GF(26) which is constructed based on the 
primitive polynomial                              . The minimum 
polynomials of α, α3, α5, α7 and α9 are:

φ1(X) = 1 + X + X6

φ3(X) = 1 + X + X2 + X4 + X6

φ5(X) = 1 + X +X2 +X5+X6

φ7(X) = 1 + X3 +X6

φ9(X) = 1 + X2 +X3

Hence the generator polynomial of the 5-error-
correcting BCH code of length n = 26 – 1 = 63 is

61)( XXXp ++=
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The degree of            is 27. Consequently, the code is 
a (63, 36) cyclic code. 

)}(),(),(),(),({)( 97531 XXXXXLCMXg φφφφφ=

1 3 5 7 9( ) ( ) ( ) ( ) ( )X X X X Xφ φ φ φ φ=

)(Xg
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Table 1: A list of primitive BCH codes
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Table 1:  A list of primitive BCH codes (Cont.)
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Table 2: The elements of GF(24) generated by 
p(X) = 1+ X+X4
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Table 2:  Minimal polynomials of the elements in 
GF(24) generated by p(X) = X4 + X +1 (cont.)

Conjugate roots Minimal polynomials
0 X
1 X + 1

α,α2,α4,α8 X4 + X + 1

α3,α6,α9,α12 X4 + X3 + X2 + X +1

α5,α10 X2 + X +1

α7,α11,α13,α14 X4 + X3 + 1
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Table 3:  Minimal polynomials for GF(2m) 

For example, the minimal polynomial of  α3  is  

φ3(X) = 1 + X2 + X3, which is denoted by 

3    (0,  2,  3)

The conjugate roots of φ3(X)  are 

α3 , α3×2 = α6, α6 ×2 = α12 = α5
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Table 3:  Minimal polynomials for GF(2m) (cont.)

16
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Table 3:  Minimal polynomials for GF(2m) (cont.)

17
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Table 3:  Minimal polynomials for GF(2m) (cont.)

18
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Table 3:  Minimal polynomials for GF(2m) (cont.)

19



21

Table 3:  Minimal polynomials for GF(2m) (cont.)
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4 . Properties

• Consider a t-error-correcting BCH code of length 
n = 2m – 1 with generator polynomial  

• has α, α2, α3, … , α2t as root, i.e. , 

• Since a code polynomial           is a multiple of      
also has α, α2, α3, …, α2t as roots, i.e. ,    

)(Xg

)(Xg

for 1≤ i ≤ 2t.

for 1≤ i ≤ 2t.,0)( =ig α

)(XV )(Xg

)(XV

,0)( =iV α
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• A polynomial          of degree less than 2m – 1 is a 
code polynomial if and only if it has α, α2, α3 , …, 
α2t as roots. 

)(XV
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5. Decoding of BCH Codes

• Consider a t-error-correcting BCH code of length   
n = 2m – 1 with generator polynomial 

• Suppose a code polynomial 

is transmitted . 
• Let                                                            

be the received polynomial . 

1
1

2
210 ...)( −

−++++= n
n XrXrXrrXr

)(XV

1
1

2
210 ...)( −

−++++= n
n XvXvXvvXV
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• Then                                  , where         is the error 
pattern caused by the channel noise. 

• To check whether          is a code polynomial or not, 
we simply test whether.

• If yes, then         is a code polynomial; otherwise    
is not a code polynomial and the presence of errors 
is detected. 

• Decoding of a BCH code consists of the same three 
steps as for the decoding a cyclic code, namely:
( 1 ) syndrome computation, 
( 2 ) determination of the error pattern, and 
( 3 ) error correction. 

)(Xe

)(Xr

0)(...)()( 22 ==== trrr ααα

)(Xr (Xr

)()()( XeXVXr +=

)
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6. Syndrome Computation

• The syndrome consists of 2t components in GF(2m), 

where                   for 1 ≤ i ≤ 2t.
• Computation: Let φi(X) be the minimum polynomial of 
αi. Dividing          by φi(X), we obtain 

Then

• can be obtained by feedback shift-register 
with connections based on φi(X).

1 2 2( , ,...., ),tS S S S=
)( i

i rS α=

)(Xr

)( i
i bS α=

)( i
i bS α=

)()()()( XbXXaXr i +×= φ



27

• Example 3: Let m = 4 and t = 2. Consider the double-
error correcting BCH code of length 24 – 1 = 15. The 
generator polynomial has 

α, α2, α3, α4,
as roots where α is a primitive element in GF(24) 
constructed based on                              . The code is 
a (15, 7) code.

• Suppose the vector, 

is received. Then 

41)( XXXp ++=

)000001000000010(=r

81)( XXr +=
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• The minimum polynomial of α, α2, α3, α4 is 

• The minimum polynomial of α3 is

• Dividing            by φ1 (X) and φ3(X), we have 

4
1 2 4( ) ( ) ( ) 1 .X X X X Xφ φ φ= = = + +

2 3 4
3 ( ) 1 .X X X X Xφ = + + + +

2
1 )( XXb =

3
3 1)( XXb +=

)(Xr
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• Then 

• Hence the syndrome of             is 

2
11 )( αα == bS

42
12 )( αα == bS

84
14 )( αα == bS

793
33 1)( ααα =+== bS

)(Xr

),,,(

),,,(
8742

4321

αααα=

= SSSSS
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Example 4: this example uses the built functions in 
MATLAB6.1 to simulate a Chinese poem transmission 
over  the AWGN channel as SNR = 6.0 dB.

clear
fid = fopen('杜甫詩.txt','r');
A = fread(fid); % A is an array of integers
S = char(A'); % to chinese character
D = size(A);
SNR = 6 ;   % 6dB = SNR = 

10log(Eb/No)=10log(signal_pw/(code_rate*2*nois
e_var)), assume signal_pw = 1

noise_var = 1/(2*code_rate*10^(SNR/10));
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KK = 16;  % info length
NN = 31;  % code length
TT = 3;   % error correct capability
for i=1:2:D(1)  

for j=1:8   % to get all bits in two adjacent integers
b(j) = bitget(A(i),j);
b(j+8) = bitget(A(i+1),j);

end 
u = bchenco(b,NN,KK);  % bch(31,16,3) encoder 
v = -2*u+1;    % with BPSK format, 0 <--> 1,  1 <--> -1
r =  v  + sqrt(noise_var)*randn(size(v));   % AWGN channel
for j=1:31      

if (r(j) > 0)  y(j) = 0;     % hard decision output
else y(j) = 1;
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end
end
y1 = y(16:23);  % without decoded, obtain the first 8-bit.
y2 = y(24:31);  % without decoded, obtain the second 8-bit.
B(i)  =  bits2num(y1,8);
B(i+1) = bits2num(y2,8);
v_hat = bchdeco(y,KK,TT);
C(i) = bits2num(v_hat(1:8),8);
C(i+1) = bits2num(v_hat(9:16),8) ;   

end
fid2 = fopen('杜甫詩(雜訊干擾).txt','w');
fid3 = fopen('杜甫詩(BCH decoded).txt','w');
fprintf(fid2,'%c',char(B));
fprintf(fid3,'%c',char(C));
fclose('all');
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烽火連三月

家書抵萬金

白頭騷更短

渾欲不勝簪

國破山河在

城春草木深

感時花濺淚

恨別鳥驚心

烽火連三月

家書抵萬金

白頭騷更短

渾欲不勝簪

國破山河在

城春草木深

感時花濺淚

恨別鳥驚心

烽火連三月

頡股抵萬?

白貄騷更短

渾欲提細穠?

國?廾河在

城春秦d麮c

感時兕濺
?鳥驚心

.

Figure 1: the original Chinese poem (left), degraded 
by AWGN (middle),  recovered with BCH 
encoder/decoder (right)
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HW #9

1. What is the generator polynomial             of the 
three-error-correcting of BCH code with length 
31, which employed in  Example 4 ?

2. Referring to Example 4, please input a new 
Chinese poem, and what is the result of this 
poem with BPSK signal transmission over the 
Rayleigh fading channel as SNR = 6.0 ?.

)(Xg
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7. Syndrome and Error Pattern

• Since                                            ,  then 

• This gives a relationship between the syndrome and 
the error pattern. 

• Suppose             has v errors at the locations                  
i.e.,

1 2 .i t≤ ≤

1 2, ,..., ,vjj jX X X

for

1 20 ... 1.vj j j n≤ < < < < −where

(2)

(3)

),()()()( iiii
i eevrS αααα =+==

)(Xe

,)( 21 vjjj XXXXe L++=

)()()( XeXvXr +=
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• From (2) and (3), we have the following relation 
between the syndrome components and error 
locations :  

tjtjtjt
t

jjj

jjj

v

v

v

eS

eS

eS

2222
2

2222
2

1

)()()()(

)()()()(

)(

21

21

21

αααα

αααα

αααα

+++==

+++==

+++==

L

M

L

L
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• If we can solve these 2t equations, we can 
determine

• Once are determined, the 
exponents  j1 , j2 ,…, jv tell us the locations of 
errors. 

• Any method for solving these 2t equations is a 
decoding method. 

• Since the elements                              give the 
locations of errors, they are called error-location 
numbers. 

• For simplicity, let 

1 2, , , .vjjjα α αL
1 2, , , vjjjα α αL

1 2, , , vjjjα α αL

,lj
lβ α= for 1≤ l ≤v
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• Then, we have 

• These equations are known as power-sum
symmetric functions . 

1 1 2
2 2 2

2 1 2

2 2 2
2 1 2

...

...

...

v

v

t t t
t v

S

S

S

β β β

β β β

β β β

= + + +

= + + +

= + + +

M (4)
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8 . Error-location Polynomial 

• Define 

where σ0 = 1. 
• σ(X) has ( the reciprocals of error-

location numbers ) as roots. 
• σ(X) is called the error-location polynomial. 
• If we can determine σ(X) from the syndrome, then 

the roots of σ(X) give us the error location numbers, 
and hence the error pattern can be determined. 

1 2

0 1

( ) (1 )(1 )...(1 )v
v

v

X X X X

X X

σ β β β

σ σ σ

= + + +

= + +L

1 1 1
1 2, , , vβ β β− − −L

(5)
σ(X)
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• From (5), we have the following relationship 
between the coefficients of σ(X) and the error-
location numbers: 

0

1 1 2

2 1 2 1 3 1

3 1 2 3 1 2 4 2 1

1 2

1

v

v v

v v v

v v

σ
σ β β β
σ β β β β β β
σ β β β β β β β β β

σ β β β

−

− −

=
= + +
= + +
= + +

=

L

L

L

M

L

(6)
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• The above equations are called elementary–
symmetric functions. 

• From (4) and (6), we have the following 
relationship between the syndrome and the 
coefficients of σ(X): 

1 1

2 1 1 2

3 1 2 2 1 3

1 1 2 2 3 3 1 1

1 1 2 1 3 2 1

0
2 0

3 0

0
0

v v v v v v

v v v v v

S
S S
S S S

S S S S S v
S S S S S

σ
σ σ
σ σ σ

σ σ σ σ σ
σ σ σ σ

− − − −

+ − −

+ =
+ + =
+ + + =

+ + + + + =
+ + + + =

M

L

L

M

(7)
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• Note that 1 + 1 = 0. Then 

• The equations of (7) are called the Newton’s 
identities. 

• If we can determine σ1 , σ2 , …, σv from the 
Newton’s identities, then we can determine the 
error-location numbers, β1, β2, … , βv by finding 
the roots of σ(X). 

,     ;
0 ,     even   { i fo r o d d i

i fo r ii σσ =
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A procedure for finding the error pattern

Syndrome 

Error-location 
Polynomial σ(X)

Error-location 
Numbers

Error Patterns )(Xe

S
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9 . Decoding Procedure for BCH 
Codes

( 1 ) Compute the syndrome 
( 2 ) Find error–location polynomial σ(X) .
( 3 ) Determine the error-location numbers by   

finding the roots of σ(X) . 
( 4 ) Correct errors
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Example 5: As we mentioned in Example 3, if the all-
zero vector is transmitted, i.e.,

and the received vector is, 

The syndrome is computed as

0)( =XV

)000001000000010(=r
81)( XXr +=

)000000000000000(=V

1 2 3 4
2 4 7 8

( , , , )

( , , , )

S S S S S

α α α α

=

=
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From the Newton’s identities (7), we obtain the 
following equations

Since it is a 2-error-correcting BCH code, the error-
location polynomial is 

04
03
02
0

41322314

312213

2112

11

=++++
=+++
=++
=+

σσσσ
σσσ
σσ
σ

SSSS
SSS
SS

S

2
210)( XXX σσσσ ++=

034 ==σσ
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We substitutes these syndrome values and the 
Newton’s identities become

So that,     

0

0

0

0

4
2

7
1

8

2
2

4
1

7

2
1

4
1

2

=++

=++

=+

=+

ασασα

ασασα

ασα

σα

8
2

2
1 , ασασ ===>

2821)( XXX αασ ++=
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The error location polynomial is factored as

The roots are 1 and        .  Their multiplication inverse 
elements is 1                       and                   . Therefore 
the error location numbers are 1  and       . The error 
polynomial is

The decoded polynomial is

)1)(1()1)(1(
))(1(1)(

21
87

7282

XXXX
XXXXX

ββαα

ααασ

++=++=

++=++=

7α

8α
)1( 1

0 βα ==

880 1)( XXXXe +=+=

)(0)()()(ˆ XVXeXrXV ==+=

)( 2
8 βα =
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10. Berlekamp’s Iterative Method 
for Finding σ(X)

• σ(X) can be computed iteratively . 
• The iteration process consists of 2t steps . 
• At the u-th step, we determine a minimum-degree 

polynomial 

whose coefficients satisfy the first u Newton’s  
identities

( ) ( ) ( ) 2 ( )
1 2( ) 1 u

u

lu u u u
lX X X Xσ σ σ σ= + + +L
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• Our next step is to find σ(u+1) (X) whose 
coefficients satisfy the first  u + 1 Newton’s 
identities. 

• First we check whether σ(u)(X) also satisfies the ( u 
+ 1)-th Newton’s identity. 

• If yes, σ(u +1)(X) = σ(u)(X) is a minimum degree 
polynomial whose coefficients satisfy the first u + 
1 Newton identities.

• If not, a correction term is added to σ(u)(X) to form 
σ(u +1)(X) so that its coefficients satisfy the first u + 
1 Newton’s identities. 
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• To test whether σ(u)(X) satisfies the (u + 1)-th 
Newton’s identity, we computes 

This quantity is called the u-th discrepancy.

• If du = 0, then the coefficients of σ(u)(X) satisfies 
the (u + 1)-th Newton’s identity. We set 
σ(u +1)(X) = σ(u)(X)
lu+1 =  lu (actually, lu is the degree of σ(u)(X))

• If du 0, σ(u)(X) needs to be adjusted to satisfy 
the (u + 1)-th Newton’s identity. 

( ) ( ) ( )
1 1 2 1 1....

u u

u u u
u u u u l u ld S S S Sσ σ σ+ − + −= + + + +

≠
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• Correction:  We go back to the steps prior to the u-
th step and determine a polynomial σ(p)(X) such 
that             and p - lp has the largest value, where 
lp is the degree of σ(p)(X). Then 

• σ(u +1)(X) is the solution at the (u +1)-th step of the 
iteration process. 

• Repeat the testing and correction until we reach 
the 2t-th step. Then 

σ(X) = σ(2t)(X).
• The above iteration method applies to both binary 

and nonbinary BCH codes. 

0≠pd

( 1) ( ) 1 ( ) ( )( ) ( ) ( )u u u p p
u pX X d d X Xσ σ σ+ − −= +
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• For binary BCH codes, it can be reduced to t steps. 
Every even step can be skipped .

Execution of the Iteration Process
• Note that σ(t)(X) = 1 +S1X satisfies the first 

Newton’s identity. 
• To carry out the iteration, we set up a table as 

below and fill out the table:
u σ(u)(X) du lu u - lu

-1 1 1 0 -1
0 1 S1 0 0
1 1+S1X

2t
M
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11. Finding the Roots of σ(X)

• The roots of σ(X) in GF(2m) in σ(X). If σ(αi) = 0 , 
then αi is a root of σ(X) and σ-i = is an 
error-location number. 

• Roots (error-location numbers ) determination and 
error correction can be carried out simultaneously. 

• To decode the first received digit rn-1, we check 
whether α is a root of σ(X). If σ(α) = 0, then rn-1 is 
erroneous and must be corrected. 

• If σ(α)       ,  then rn-1 is error-free. 0≠

im −−12α
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Iterative  formula,   u = 1, … 2t

( 1) ( ) 1 ( ) ( )( ) ( ) ( )u u u p p
u pX X d d X Xσ σ σ+ − −= +

uu lu
u

lu
u

u
u

uu SSSSd −+
++

+
+

++ +++= 2
)1()1(

21
)1(

121 σσσ L

( ) ( ) ( )
1 1 2 1 1....

u u

u u u
u u u u l u ld S S S Sσ σ σ+ − + −= + + + +
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• To decode rn-i , we test whether σ(αi) = 0.             
If σ(αi) = 0, rn-i is erroneous and must be corrected, 
otherwise rn-i is error-free. 

Example 6: Consider the decoding of the (15, 5) 
triple-error-correcting BCH code given in 
Example  1. The generator polynomial  has 

α, α2, α3, α4, α5, α6

as roots. The roots α, α2 and α4 have the same 
minimum polynomial, 

φ1(X) = φ2(X) = φ4(X) = 1 + X + X4
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The roots α3 and α6 have the same minimum 
polynomial, 

φ3(X) = φ6(X) = 1 + X + X2 + X3 + X4

The minimum polynomial of α5 is 
φ5(X) = 1 + X + X2 . 

• Suppose 

is transmitted and 

is received . 
)001000001010000(=r

)000000000000000(=V
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• Then 
• Clearly the error pattern is 

• Dividing by φ1(X), φ3(X) and φ5(X) respectively, 
we have the following remainders: 

1253)( XXXXr ++=

1253)( XXXXe ++=

2
5

32
3

1

)(

1)(

1)(

XXb

XXXb

Xb

=

++=

=
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• The syndrome components are: 

Hence 

105
55

518126
36

10963
33

4
14

2
12

11

)(

1)(

1)(

1)(

1)(

1)(

αα

αααα

αααα

α

α

α

==

=++==

=++==

==

==

==

bS

bS

bS

bS

bS

bS

),,1,,1,1( 51010 ααα=S
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• The 1st step: 

• The 2nd step:

• The 3rd step: since             and in comparison of  
the values of       and            in steps 1 and 0.            
p = 0 is taken (i.e. step 0),  

01111
)1(

121 =⋅+=+= SSd σ

510
2

)2(
132

)1()2(

11
1)()(

αασ

σσ

=⋅+=+=

+==

SSd
XXX

02 ≠d
ulu −ud
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25

)0()02(1
02

)2()3(

1

)()()(

XX

XXddXX

α

σσσ

++=

+= −−

0
111 510

2
)3(

23
)3(

143

=
⋅+⋅+=

++=

αα

σσ SSSd

uu lu
u

lu
u

u
u

uu SSSSd −+
++

+
+

++ +++= 2
)1()1(

21
)1(

121 σσσ L

u = 2
( 1) ( ) 1 ( ) ( )( ) ( ) ( )u u u p p

u pX X d d X Xσ σ σ+ − −= +



62

25

)0()02(1
02

)2()3(

1

)()()(

XX

XXddXX

α

σσσ

++=

+= −−

0
111 510

2
)3(

23
)3(

143

=
⋅+⋅+=

++=

αα

σσ SSSd

• The 4th step:

)()( )3()4( XX σσ =

10

10
3

)4(
24

)4(
154

111
α

α

σσ
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+⋅+=

++= SSSd
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•The 5th step: consider the values of         and  
prior to the 4th step. We take p = 2 (i.e. 2nd step)

35

)24(1010)4()5(

1
)1()()(

XX
XXXX

α

αασσ

++=

+⋅+= −

0
1 105105

3
)5(

34
)5(

25
)5(

165

=
+⋅+=

+++=

αααα

σσσ SSSSd

ud ulu −

•The 6th step:
35)5()6( 1)()( XXXX ασσ ++==
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• Iterative process results in the following table : 

u σ(u)(X) du lu u - lu

-1 1 1 0 -1
0 1 1 0 0
1 1+X 0 1 0 
2 1+X α5 1 1
3 1+X+α5X2 0 2 1 (take p = 0)

5 1+X+α5X3 0 3 2 (take p = 2)
6 1+X+α5X3 - - -

4 1+X+α5X2 α10 2 2
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• Iterative process results in the following table : 

• Note that

Hence α3, α10 and α12 are roots of σ(X). 
• The reciprocals of these 3 roots are α-3 = α12 , α-10

= α5 and α-12 = α3 . 
• Hence α3, α5 and α12 are the error-location 

numbers. 
• Consequently, the error pattern is 

(6) 5 3( ) ( ) 1X X X Xσ σ α= = + +

3 10 12( ) ( ) ( ) 0σ α σ α σ α= = =

1253)( XXXXe ++=
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HW #10
1. In Example 6, what are the error pattern             

and the output of BCH decoder, if the received 
vector is

)(Xe

)000000001010000(=r
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12. The Step-By-Step Decoding

• In this decoding, we do not find the error-location 
polynomial. Instead, we use the concept of the 
error-trapping decoding.

• First we define the syndrome matrix as following:

where

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

−−− vvvv

v

SSSS

SSS
S

M

L

MM

L

L

322212

123

1

)0( 00
001

),,,( 221 tSSSS L=
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• Theorem 1: For any binary BCH (n, k, t) code, and 
any v such that                 , the v by v syndrome 
matrix is singular if the number of errors is v-1 or 
less, and is nonsingular if the number of errors is v
or v+1. 

• The decision vector is defined

where decision bit        is calculated as

tv ≤≤1

0)det( if1
0)det( if0

≠=
==

vv

vv

Mm
Mm

),,,( 21 tmmmm L=

vm
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• The decision vector of a general t-error-correcting 
binary BCH code can be determined as follows:
(1)if there are no errors, then

(2)if there is one error, then

(3)if there are u errors, then 

where the symbol X can be 0 or 1.
(4)if there are no less than t errors, the 

)0()0,,0,0( tm == L

)0,1()0,,0,1( 1−== tm L

)}0,1,1,{( 2 utuXm −−∈

)}1,1,{( 2−∈ uXm
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• For example, if t = 2, the decision vector could be 
(0, 0) for no errors, (1, 0) for single error, and (1, 1) 
for two errors.

• For a received sequence                              ,  and 
error pattern with weight L , the step-by-step 
decoding is
(1)Set i = t,  j = -1
(2)Check if det(Mi) = 0, If det(Mi) = 0,  i = i-1, 

go to step  (4).
(3)j = j+1, Complement rn-j-1 to determine  the 

modified syndrome and whether det(Mi) = 0.  
If det(Mi) ≠ 0, set                         .Otherwise,
i = i-1. If i = 0, go to (5).

),,( 110 −= nrrrr L

111 += −−−− jnjn rr
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(4)If  j < k , go to (3). If j = k, go to (5). 
(5)Read the information digits rn-1, rn-2, …., rn-k

• Example 7: in Example 3, for 2-error-correcting (15, 7) 
BCH code, suppose the all-zero vector is transmitted. 
and the received sequence is

The syndrome is computed as follows:

   0) 0 0 0 0 1 0 0 0 0 0 1 0 0 0(=r

 )(  93 XXXr +=
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⎡
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There are at least two errors at the received sequence. 
To complement       ,  the received sequence polynomial 
becomes as follows:

14r
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14 93  )( XXXXr ++=

The syndrome is computed as follows:
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From the syndrome matrix, it shows that to complement
does not reduce the number of errors.14r
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• For p > 0,         is obtained by cyclically shifting      
p places to the  right. 

• The syndrome matrix for                 is defined as 
follows:

1
)(
+

p
r
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• The modified step-by-step decoding is described 
as follows: 
(1) Set i = t, p = 1.
(2) Check                       ,  if                        ,      

i = i-1, go to step  (4).
(3) Complement to determine  the shift

syndrome and whether                         .  
If                         , set                         .
Otherwise,                     , and  i = i-1.                
If i = 0,   go to (5).

(4) p = p+1, if  p < k , go to (3). 
If p = k, stop. 

(5)Read the information digits rn-1, rn-2, …., rn-k

1)(
0

)(
0 += pp rr

0)det( )( =p
iM

0)det( )0( =iM 0)det( )0( =iM

)(
0

pr

0)det( )( ≠p
iM

1+= −− pnpn rr
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Example 8: Consider 2-error-correcting (15, 7) BCH 
code over GF(24) with the primitive polynomial 
1+X+X4. The generator polynomial is 

Suppose the all-zero vector is transmitted. And the 
received sequence is 

The whole procedure of the step-by-step decoding is 
shown in the following page. After 7 steps, the 
information vector  is obtained.

8764
31 1)()()( XXXXXXXg ++++== φφ

   0) 0 0 0 0 1 0 0 0 0 0 1 0 0 0(=r
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 )(  93 XXXr +=
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The corresponding decision vector is 

As one time cycle shift in          ,  the corresponding 
syndrome is 

)1,1(=m

)(Xr
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8
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The corresponding decision vector is 

The whole decoding process is shown as follows.
)1,1(=m
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r S m

1,1482 ,,, αααα   0 0 0 0 0 1 0 0 0 0 0 1 0 0 0

Info.1
)(
+

p
S1

)(
+

p
r rm

21218 ,,, αααα 1,1 0 0 0 0 0 1 00 0 0 0 1 0 0 0 0 0 1 0 0 01p=1

0 0 0 0 0 1 0p=2 1131314 ,,, αααα 1,1 0 0 0 1 0 0 0 0 0 1 0 0 010
1,1 0 0 0 0 0 1 00 0 1 0 0 0 0 0 1 0 0 0 0 0 1

0 1 0 0 0 0 0 1 0 0 0 0 0 0 1
1 0 0 0 0 0 1 0 0 0 0 0 0 0 1

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 1

p=3 4821 ,,, αααα
1010510 ,,, αααα
721113 ,,, αααα
61239 ,,, αααα

1095 ,,1, ααα

1,1p=4   0 0 0 0 0 1 0
1,1 0 0 0 0 0 1 0p=5

0,1p=6 0 0 0 0 0 0 0
p=7 0 0 0 0 0 0 01,1



81

Example 8: This example uses the built functions in 
MATLAB 6.1 to simulate a photo transmission over  
the AWGN channel as SNR = 6.0 dB. All statements in 
this program are almost as Example 4. The original 
photo, deteriorated photo and recovered photo are 
shown in the following page.

Example 9: this example uses the built functions in 
MATLAB 6.1 to simulate a sound record transmission 
over  the AWGN channel as SNR = 6.0 dB.

These three program files are attached on website 
“老胡小舖”



82Figure 2: the original photo



83Figure 3: the deteriorated photo by AWGN channel.
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Figure 4: the recovered photo with BCH 
encoder/decoder
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HW #10-1
1. Referring to Example 6, what is the result of this 

photo with BPSK signal transmission over the 
Rayleigh fading channel as SNR = 6.0 ? 
Compare with the results of Example 6.

2. Referring to Example 7, what is the result of this 
sound record with BPSK signal transmission 
over the Rayleigh fading channel as SNR = 6.0 ? 
Compare with the results of Example 7.

3. Referring to Example 3,  find the BCH decoded 
sequence. 
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