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1. Introduction

e They are nonbinary cyclic codes with code
symbols from a Galois field.

e Discovered In 1960 by I. Reed and G. Solomon.

e The most important Reed—-Solomon (RS) codes
are codes with symbols from GF(2™). They are
widely used In data communications and storage
systems for error control.
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e Singleton bound
d.i, <n-k+1.

e One of the most important features of RS codes Is
that the minimum distance of a RS code Is one
greater than its number of parity-check symbols.
That 1s, the minimum distance of an (n, k) RS code
Isn—-k+1,1e,

d.i,=n-k+1
Codes of this kind are called maximum-distance-
separable (MDS) codes .
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2 . Encoding of RS codes

e et o be a primitive element in GF(2™).

e For any positive integer t <2" =1, there exists a t-
symbol-error-correcting RS code with symbols
from GF(2™) and the following parameters:

n=2"-1
n—k=2t
k=2m-1-2t
d.. =2t+1.
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e The generator polynomial is
g(X)=(X +a)(X +a®)..(X +a*)
=g, +09,X +0,X°+...+ g, X+ X?

where g, € GF(2") .

e Note that g(X)has «, &2, ..., a2t as roots.
e Each code polynomial

V(X) =V, +V, X +V, X +...+v X"

has coefficients from GF(2™M) and is a multiple of the
generator polynomial g(X).
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o Let C(X)=cy+C, X +C, X% +..4C, X " pe the
message to be encoded where c¢. e GF(2™) and
k=n-2t.

Dividing X *c(X) by 9(X), we have

X*e(X)=a(X)-g(X) +b(X)

where b(X)=b, +b X +...+b, , X*™* isthe
remainder.
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e Then
v(X) =b(X)+ Xc(X)

is the codeword for message C(X).

e The encoding circuit is shown in Figure 1.
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by _’ b, —>—> Do 1 4’@
Parity digits | <

X 2c(X) L )ﬁ

Message output

Figure 1: Encoding circuit for a nonbinary cyclic code
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o Let
c(X)=1 X,---, X

the corresponding remainder polynomials b, (X)
are denoted by

bi(X) =bio+biaX +---bi2-1 X

for
0<i1<k-1
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The corresponding generator matrix In systematic
form is

bo,o bO,l bO,Zt—l 10 -0
b,y b, - by, 01 -0

bk—l,O bk—l,l bk—1,2t—1 c 0 -1
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e Since (n, k, d_..) RS code is a cyclic code, the
generator matrix in nonsystematic form is in the
following

0o O, - QOn, 1 0 --- 0
0 90 o Opxn Oy, 1 -+ 0

00 0 - 09y 9 9, - Oy 1
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Example 1.

Consider an (7, 5, 3) RS code over
GF(2%) generated by o’ +a+1=0,
primitive element.

where o IS

power polynomial vector
0 0 (0,0,0)
1 1 (1,0,0)
o o (0,1,0)
o’ o’ (0,0,1)
s 1+ « (1,1,0)
o a+ o (0,1,1)
o 1+ a+ o2 (1,1,1)
o 1+ o2 (1,0,1)
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The generator polynomial of (7, 5, 3) RS code Is
g(X)=(X +a)(X +a?)=a’+a*X + X°.

And the generator matrix in nonsystematic form is

> a* 1 0 0 0 O
0 &> «* 1 0 0 O
G=|0 0 ¢ « 1 0 0
0 0 0 & o« 1 0

0 0 0 O o o 1 |
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Since

1. X*=1.g(X)+a’' X +&°

X-X2=(X+a")-g(X)+ X +1

X2 X2 =(X?+a* X +D)-g(X)+a’X +&°

X3 X2=(X+a’ X+ X +°)-g(X)+a°X +«

X4 X=X+ X+ X+’ X +°)-g(X)+a* X +«
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therefore, the generator matrix in systematic form is

o o

1 1

G=|a’

a o

a o
=[P, 1]
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3. Properties of RS Codes

Theorem 1:
e | et acode polynomial be

V(X)=v, +V, X +...+v_ X"

which has a, a?, ... ,a%tas roots.
e Since ai isaroot of V(X), then

vied')=v,+v,a' +..+v _a' " =0
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This equality can be written as a matrix product as

follows:
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If v=(v,,v,,---,v. ) thenthe parity check matrix
H is

v-HT =(0,0,---0)

and (n—k)'s
o a’ o’ a"
e s 023 o o 20D
H= o’ a®  a’? e A
1 o2 P, o203 o o 2D
(4.1)
AT AR = LAY 20
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Example 2: Consider an (7, 5, 3) RS code mentioned
In Example 1, the parity check matrix Is
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Theorem 2:

The dual code of an (n, k, d;,) RS code is still a
maximum-distance-separable (MDS) code, whose
code length is n, and information length is n - k, and
minimum Hamming distance isn-(n-k) + 1 =k +
1.

Theorem 3|[2]:

Any combination of k symbols in a codeword in an
MDS code may be used as message symbols in a
systematic representation. In other words, we use
these k symbols to recovery the whole codeword.
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Example 3: Let a codeword generated is shown in the
following.

Fd 100 0 0
1 1010 0 0
V=@ 1100 ¢ 0 0 1 0 0
a0 0 0 1 0
a @ 0 0 0 0 1

= 1 110 0
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Assume there are some misses In transmission, we
only get

r:(azla)T(%(OO)

Misses

l permutation

r's@ 1 a 0 0 X X)

We use these 5 symbols as a message symbols
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From above, we use the portion of data to obtain
the whole codeword. Based on the data positions,
we permute the generator matrix as the following
form.

— K

8
1
G=|4° 5
04
R

o O O O Bk
o b O O O
_ O O O O
o O O — O
o O —» O O

R K R

In the following steps, we show the raw operations to
obtain a new systematic form
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1 0 0 0 0 & &
01 00 0 a &
\_/'2(05210500)'0010005054
0 00 1 0 14
0 00011 1

=(0f10500i1)

l Inverse permutation
v=(> 1 « 110 0
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4 . RS Codes for Binary Data

e Every element in GF(2™) can be represented
uniquely by a binary m-tuple, called a m-bit byte.

e Suppose an (n, k, d....) RS code with symbols from
GF(2™) is used for encoding binary data.

e A message of kxm bits Is first divided into k m-bit
bytes.

e Each m-bit byte Is regarded as a symbol in GF(2™M).

e The k-byte message is then encoded into an n-byte
codeword based on the RS code.
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By doing this, we actually expand a RS code with
symbols from GF(2™) into a binary (nm, km) linear
code, called a binary RS code.

To decode, the binary received vector at the channel
output is first divided into n m-bit bytes. Each m-bit
bytes Is transformed back into a symbol in GF(2M).

The resultant vector over GF(2™M) Is then decoded
based on the RS code.

As a result, the binary RS code Is capable of
correcting any error pattern that affects t (or fewer)
m-bit bytes. It is immaterial whether a byte has one
error or m errors, it Is counted as one bhyte (or
symbol) error.
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e Binary RS codes are very effective In correcting
bursts of errors as long as no more t bytes are
affected.
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5. Decoding of RS Codes

1. Syndrome-based decoding
e Peterson-Gorenstein-Zierler Algorithm|2]
o Berlekamp-Massey Algorithm[1][2]
e Euclidean Algorithm[1][2]
e Frequency Domain Algorithm[1][2]
o Step-by-Step Algorithm[3]-[6]

2. Interpolation-based decoding
e \Welch-Berlekamp algorithm[7][8]
e Listdecoding[9]
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Syndrome-based decoding

Decoding Procedure:
(1) Compute syndrome vector § — (S.,S,,....S,,)"
( 2 ) Determine error-location polynomial o(X).
( 3 ) Determine error-value evaluator polynomial Z (X)

( 4 ) Evaluate error-location numbers (find roots of
o(X) )and error values and perform error
correction.

2007/5/24 A T A B == A A 27



e RS codes are actually a special subclass of
nonbinary BCH codes.

e Decoding of a RS code is similar to the decoding
of a BCH code except an additional step is needed.

o |et

V(X) =V, +V, X +...+v_ X"
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and
r(X)=r,+rX +..+r_ X" =v(X)+e(X)

be the transmitted code polynomial and received
polynomial respectively.

e Then the error polynomial is
e(X)=r(X)-v(X)
=g, +eX +...+e X"
where €; = r; — v; Is a symbol in GF(2™) .
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Syndrome Computation
e The syndrome of a received polynomial r(X) is

S=(5,,S,1.,Sy)
whereS. =r(a') .
e To find S;, we divide r(X) by X+a. This

T ) =a(X)- (X +a') +b
where b e GF(2").
e Then S, :r(ai)zbi
=e, a" b +e a"™ +-e, a™h

~e Bl re, fite,
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e Suppose g(X) hasv errors at the locations
Xh X2 ... X¥ Then
_ J1 P Iy
e(X)=¢; X" +e;, X?+---g; X
e The syndromes are computed as follows:
S, :ejlﬂl "‘ejzﬁz +°”ejvﬂv
S,=¢e, B +e, B, +--e [ (1)
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error-location polynomial

e And error-location numbers are given by

'Bh:ah’ ﬁh:ﬂl
Isz :ajz’ for convenlence> :sz = 3,
B, =a”. B, = b,

e The error-location polynomial is defined by

o(X) 2 [1- X)L~ BX2)--- L= B,X")

=l+oX+---+0, X"

(2)
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e The error locator numbers are the reciprocals of the
roots of the error-locator polynomial o(X) .

eLet X =47 in(2), and we obtain the following
eguation

oc(B)=1+c,8 "+ +o,B " =

e Since the expression sums to Zero, we cam multiply
through by a constant €; ,6’

ejiﬂi 1+ Glﬁi_l T T JVIBi—V)
—e, (B + o f v o B =0
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e Sum (3) over all indices I, obtaining an following
expression which is called “Newton’s identities”

ieji ('Bil T Ulﬁil_l T Gvﬁil_v)

Vv Vv Vv
| |- |—
= E ,ejiﬁi "'012 l,ejiﬂi 1+"'+Gv§ l,ejiﬂi '

— SI _I_ Glsl—l + ** + GVSI—V

(4)
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Peterson-Gorenstein-Zierler
Decoding Algorithm

e Matrix method: there are v errors
Ac=S — o=A"'S
o(X)=1l+0, X +--+0,X"

J:[Gl’...’GV]T

g — [Sv+1’ T SZV]T
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Peterson-Gorenstein-Zierler
Decoding Algorithm

e In(4),ifweassumev=t and t+1<1<2t, then

015, + 0,9, 1"+ 0,9, =—5 4
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_81 Sz St i O ) _St+1_
A — S, S.3 Ot Gf—1 _ St.+2 (6)
_St St 77 SZt—l__ O, | L Sy |

It can be shown that the matrix A Is nonsingular if
the received sequence contains t errors.

It can also be shown that the matrix A is singular if
fewer than t errors have occurred.
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e |f the matrix A is singular, the rightmost column
and bottom row are removed and the determinant
of the resulting matrix computed.

e This process Is repeated until the resulting matrix
IS nonsingular.

e The coefficients of the error locator polynomial
o(X) can be calculated by “Gaussian elimination”
or the inverse matrix method over GF(2M).
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e Once the error locator polynomial o(X) is
determined, and the roots of o(X) are then
computed.

e The error locator numbers £ , 1< 1 < v, are the
reciprocals of the roots of the error-locator
polynomial o(X) .

e From (1), o
,81 /62 o /Bv ei1 Sl
1312 22 ... ,BVZ e S,

s B RN
/Blv /8;/ ﬁ\\// eiV SV
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e Decoding is completed by solving for the {eij}

e |f roots of & (X) are not distinct or roots do not
exist, then declare a decoding failure.
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Example 4: Consider an (7, 3, 5) RS code, its generator
polynomial is

g(X)=(X +a)(X +a&*)(X +&*)(X +a”)
=a’+a X +X*+a’X°+ X*
Assume the received sequence IS
r(X)=X*+X*+aX +a°
The syndromes are
S, =r(a)=a’, S,=r(a’)=a’

S.=r(a)=a’, S,=r(a")=a’
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The matrix A in (6) is given by

Since
det(A) =0

We remove the rightmost column and bottom row from

A, then

6 2 3

3
— pi=«a

2007/5/24 A A BRI AL

50



From (7), we obtain the following
a’e,=a’

which gives the error magnitude 3. The error
polynomial is thus

e(X)=a’X"®
The coded sequence Is

V(X)) =r(X)-e(X)

—aP+a X+ X+a°X3+ X4
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Berlekamp-Massey Decoding
Algorithm

 |terative method: at u-th step

(X)) =1+ X + oI X2 40X Y

|

o(X)=c™(X)=1+o,X +---+0, X"

» Initially, &%(X)=1+5,X
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e At u+1-th step:

" X)=c"(X)+A

|

At final step (u = 2t):
oc(X)=c®'(X)=1+o,X +---+0, X"
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Berlekamp-Massey Decoding
Algorithm

e o(X) can be computed iteratively .
e The Iteration process consists of 2t steps .

o At the u-th step, we determine a minimum-degree
polynomial

o"(X)=1+0"X + 03" X +--- 01V X"

such that its coefficients satisfy the following u -
|, Newton’s identities:
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S, 1t+01"S ++0."8, =0

S|u+2 +G]_(U)S|u+1 +°°°+GI(UU)SZ — O

S, +01S +--+0"S,, =0

e The next step is to find a new polynomial of
minimum degree

"I (X) =1+ X 4 gD X e

u+l
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whose coefficients satisfy the following u+1 -
|,+; Newton’s identities:

S)
S)

+o"MS 4. 4 0MS =0

u+1 u+l

u+1)SI +°”+Gl(u+1)82 -0

u+l

u+l +1

(
u+1'|'2 + Gl u+1+1

(u+1) (u+1)
S, +o; S, ++0; S

u+1 1 sl u-+1-1

=0

u+l

e \We continue the foregoing process until 2t steps
have been completed. At the 2t-th, we have

o(X) =o' (X)
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e In u+1-th iteration, ou*D (X) is found by testing
the discrepancy:

d, =S, +01"S, +0,"S,  +...+0S

u+1 u+1-1,

o If d,= 0, then the coefficients of ol)(X) satisfies
the (u + 1)-th Newton’s identity

G(u+1) (X) _ G(u) (X)

.., = |, (actually, |, is the degree of o{")(X))
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o If d, # 0, oW(X) needs to be adjusted to satisfy
the (u + 1)-th Newton’s identity

e Correction: we go back to the steps prior to the u-
th step and determine a polynomial o(X) such
that d, #0 and p - |, has the largest value, where
,is the degree of a(P)(X) Then

(X)) =6 (X)+d,d X PP (X)

o olU*)(X) is the solution at the (u +1)-th step of the
Iteration process.
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Error-Value Evaluator Polynomial

e Once o(X) = g, + 0,X + .... + o, X" has been found,
we form

Z(X)=1+(S,+0,)X +(S,+ 05,5, +07,)X?

8
+---+(S,+0,S, +0,,5 +0,)X" Q
vy do(X)
o | et o'(X)= X
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e Then the error value at location g, =

Z(B) _ Z(B)

al is

ejl - -1 __a —1 Vv
/Bl (/BI H(]__I_IBIBI—l

|¢I
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Execution of the Iteration Process

e Note that o!)(X) = 1 +S, X satisfies the first
Newton’s identity.

e To carry out the iteration, we set up a table as
below and fill out the table:

u sOX)  d, | u-I,
-1 1 1 0 -1
0 1 S, 0 0
1 148X

2t

2007/5/24 A A BRI AL
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Example 5: Consider (15, 9, 7) RS code with symbols
from GF(24). The generator polynomial of this code is

g(X)=(X +a)(X +a? )X +a)(X +a))(X +a°)(X + )

—a® 1+’ X+ X+ X P+ X X+ X

et the all zero-vector be the transmitted code
vector and let

r=(000«’00a°00000a*00)
Thus,

r(X)=a' X’ +a’X°®+a* X"

2007/5/24 A A BRI AL
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Step 1. The syndrome components are computed as

2007/K5/24

follows

S,=r(@)=a”+a’ +a=a”
S, =r(@’)=a”+1+a” =1
S,=r(@’)=a+a’+a” =a™
S, =r(@)=a*+a“+a’ =a®
S.=r(a@’)=a’"+a’+a* =0

S,=r(a’)=a’+a’ +a=a”’
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Step 2. To find the error-location polynomial o(X), we
fill out the following table (mentioned in the
BCH lecture ), and o(X) = 1+a’X+a*X2+abX3

u cW(X) d, l, u-I,

-1 1 1 0 -1

0 1 at? 0 0 (take p = -1)
1 1+ ol? X o 1 0 (take p = 0)
2 1+ o3X 1 1 1 (take p = 0)
3 1+ o3X+a3X? o 2 1 (take p = 2)
4 1+t X+al2X? o0 2 2 (take p = 3)
5 1+ofX+alXe+al3Xs  old 3 2(take p = 4)
6 1+o/ X+o*X2+a X3 - - -

2007/K5/24
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Step 3.

o(a’)=0 @) =a" =4
o(a@’)=0 =p (a’) =a"=p,
0(0512) ~0 (a12)—1 — o= ,83

errors occur at positions X3, X6, X12,

Step 4. From (8) we find that
Z(X)=1+a’X + X +a’X?®

2007/5/24 A A BRI AL
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Using (9), we obtain the error values at locations X3,
X% and X12:

1+ a‘a+at+a’a” B o .y
o 6 -3 2 3y 6 ¢
l+a’a™)(l+a o a
l+a’a’+a ™ +a’a™ o
€6 = 3 -6 26y o ¢
l+a’a”)(l+a o o’
l+a’a ™ +a " +a’a™ a .
€ = 12 12 ;5 — &
A+ ™)1+a’a™)
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Thus, the error pattern is
e(X)=a' X’ +a’X° +a* X"

The decoding is completed by taking

V(X)=r(X)—e(X)=0

2007/5/24 A A BRI AL
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Euclidean Decoding Algorithm

e Great Common Division (GCD):

Z.(X) =c(X)S(X)mod X

where
Z,(X): error-value evaluator polynomial
o(X) : error-location polynomial
S(X) . syndrome polynomial

2007/5/24 A A BRI AL
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Euclidean Decoding Algorithm

e Consider the product o(X)S(X),

a(X)S(X) =@+ X +-++0,X")-(S,+S,X +S,X* +--)
=Sl-|-(82 +0181)X -|—(S3 —|—o'182 —|—0281)X2 4ee et

2t-1
(SZt +(7182t—1 +- '+Gv82t—v)x teee
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e We define the other error-value evaluator
polynomial Z,(X)

Z,(X) £ o(X)S(X)mod X 2

Z,(X)=S,+(S,+0,5)X +
(S,+0,S, +0,5,)X % +--. (10)

+(S,+0o,S, ,+-+0,,S)X""

o Why does the degree of Z,(X) be v-1?

2007/5/24 A A BRI AL
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e We know that the syndrome polynomial S(X)Is
S(X) = S, +S,X ++-- 45, X

= is, X' (11)
=1

e Note that only the coefficients of the first 2t are
known.
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e Combining (1) and (11), we can put S(X) In the
following form:

S(X)zix'-liejiﬁ;

=ie,-ﬁi >(sx)"

Y

Zl ,BX
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From the definition of Z,(X), using (2) and (12),
we obtain the following equation:

a(X)S(X) :<ﬂ(1—ﬂjX) >{Z €i.h }

A =1- B X
(13)
—Ze S H(l £iX)
J=1, j#i
=Z,(X)
Since for every 1, there are exactly v-1

productions, therefore the degree of Z 4(X) Is v-1.
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e The coefficients of the degree v to 2t-1 In Zy(X)
are zeros, which satisfy (5) and are call
“Newton’s identities”.

 Theerrorvalue €;at location g Is determined
by |

e — _Zo(ﬂi_l) 14
LB (44

o A slightly different error-value evaluator shown
In (8) IS
L(X)=0(X)+ XZ,(X)
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e We can express the definition of Z,(X), which
Is called the key equation in the following form:

a(X)S(X)=Q(X)X™ +Z,(X)
e Rearrange the above equation, we have

Z,(X)=—Q(X)X% +o(X)S(X) (19

2007/5/24 A A BRI AL
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e \We see that (15) is exactly in the following form
Z,(X)=GCD(X*,S(X))

=-Q(X)X* +o(X)S(X) (16)

where GCD denotes the greatest common
divisor.

e Forexample,
4 =GCD(112, 100)
4=100-8 x 12
=100-8 x (112 - 100)
=-8x112+9 x 100
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For example, 1 = GCD(X5, X3+1)
= X3+ X3+1
= X6 + X3(X3+1) +(X3+1)
= X6 + (X3+1)(X5+1)

e This decoding method is based on the Euclidean
algorithm for finding the GCD. This suggests that

o(X) and Z,(X) can be found by Euclidean
Iterative division algorithm in following form:
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e Ati-th step, we have
Z(X) =y (X)X* +aV(X)S(X)  (17)
and
ZP(X)=Z, 7 (X) =4, (X)Z§ P (X)
o (X) =0 " (X)-q;(X)aP(X)

yP(X)=y " (X)=q,(X)y " (X)
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With
Z5 7 (X)=X*
2" (X)=S(X)
7P (X) =0 (X) =1
7O (X)=c(X)=0

e To find o(X) and Z,(X), we carry out the
Iteration process given by (17) as follows: at the

I-th step
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1. We divided Z§~(X) by Z3™(X) to obtain the
quotient ,(X) and the remainder Z " (X).

2. We find o (X) from

c”(X)=c"7(X)=g; (X)o7 (X)

3. lteration stops when we reach a step © for which

deg(Z,” (X)) < deg(a” (X)) <t

4. Then Z,(X)=Z¥(X) and o(X)=0c!"(X)
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Execution of the Iteration Process

e The iteration process for finding o(X) and Z,(X)

can be carried out by setting up filling the below
table

i Z9(X) Gi(X)  ailX)
-1 X2t - 0
0 S(X) - 1
1
P
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Example 6: Consider (15, 9, 7) RS code with symbols
from GF(24). The generator polynomial of this code is

g(X)=(X +a)(X +a? )X +a)(X +a))(X +a°)(X + )

—a® 1+’ X+ X+ X P+ X X+ X

et the all zero-vector be the transmitted code
vector and let

r=(000¢a’0000004"00000)

Thus,
r(X)=a'X*+a"* X"
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The syndrome components are computed as follows

2007/K5/24

S,=r(a)=a”+a” =a’

Sz _ r(Clz) :a13+a31 :&12

S,=r(@’)=a®+a* =a’

84 _ F(Ot4)=0519+0551=0512
S.=r(@)=a’+a=a"

86 _ r(0[6) :alo _|_0511 :0[14
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The syndrome polynomial is
S(X)=a'+a“X +a’X?+a*X?®
+a X+t X
Using the Euclidean algorithm, we find
oc(X)=a"+a’X +a’X?
=g (l+a* X +aX?)
and

Z,(X)=a’+a’X
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To find the error-location polynomial o(X), we fill out

the following table

i Zy"(X) g;(X) ot)(X)
-1 X6 - 0
S(X)=a'+a*X +a’X*+a™* X’

0 ot X+ X ) 1

o’ +a’X +a° X%+ « «

a+a a+a

1 X3 +atX?
2 a’+a’X a +a® X at +a® X +a’X?
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ZP(X)=Z,"2(X) =, (X)Z{ P (X)
c?(X)=0 "(X)-q;(X)a" P (X)
o Step 1 (1=1):
2, (X) = q,(X)Z(X)+ 28 (X)

X =(a+aX)(a +a“ X +a’X*+a X’ +a™X*

+a" X))+’ +a’ X+’ X+’ X +a® X
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o (X) =0 T (X)-q(X)c@(X)
o (X)=0-(a+aX)-1=a+aX
e Step 2:
Z," (X) =0, (X)Z5" (X) +Z57(X)
a' +a X +a’ X +a X+ X + ot X =
(" +a® X))’ +a’X +a° X2+’ X2 +a®X?)

ra’+a’X

> Z,(X)=a’+a’X
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@ (X) =0 "(X)-0q,(X)a (X)

o (X)=1-(a+aX) (e +a®X)
=l+a”+(a’ +a*)X +a’X?
=a'+a’ X +a’X?
=0 (X)

— o(X)=a"+a’X +a’X?

G'(X) _ do(X)

dX

8
=
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From o(X), we find that the roots are @ and a“
Hence, the error location number are ¢* and ¢o°
The error values at these locations are

—7Z (05_3) o’ +ata” 1 .
3~ (05_3) 058 058

—Z (a_lo) a’+ata™ B o "
10 — (a—lO) 058 058
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Therefore, the error polynomial is

e(X)=a X’ +a"" X"

And the decoded codeword v(X) Is given by

V(X)=r(X)—e(X) =0
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Frequency-Domain Decoding
Algorithm

e r(X)=v(X)+e(X)
lDFT
R(X) =V (X)+E(X)

E=(E,,E,,---E, )
S, =r(a')=E, =R, for0<j<2t
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For t+1<I1<n-1-t

El+t: _(GlEI+t—l+ il o EI+t—v)

E == (E 40, )
O

vV

Once we obtain

E(X) IDFT
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e(X)

A A BRI AL

02



Frequency-Domain Decoding
Algorithm

o LetV(X)=V,+V X+ ..+V_ X" over GF(2M)
be the Galois field Fourier transform of
V(X) = v+ v, X+ ... + v X" Then

Vi =v(a;) = Zvia” (18)
v=V(a™) = nz:_lvja_” (19)
j=0
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e The product of a(X) and b(X) Is defined as
follows

a(X)=a,+a,X +---+a_ X"
b(X)=b, +b,X +---+b X"

A
C(X) = a(X)b(X)
=ab, +ab X +ab, X’ +.--+a b X"

=, +C,X +C, X ;---+C X"
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e Let the Fourier transform of a(X) and b(X) are
given by

AX)=A +AX +--+A X"
B(X)=B,+BX +---+B_ X"*

e The Fourier transform of c(X) Is given by

C(X)=C,+C,X +---+C__ X"
where

Cj:ZAkBj—k (20)
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e Let v(X) and e(X) be the transmitted code
polynomial and the error polynomial, and the
received sequence r(X) Is denoted as follows

r(X)=v(X)+e(X)
e The Fourier transform of r(X) Is given by

R(X) =V (X)+E(X) (21)

where V(X) and E(X) are the Fourier transform of
v(X) and r(X), respectively.

2007/5/24 A A BRI AL

0R



e Because v(X) is a code polynomial that has o, a2,
... o?t as roots, then

V;=0, forO< <2t
e From (21), we find that for 0 <j <2t
R; =E;

o LetS=(S, S,..., Sy) be the syndrome of r(X).
Then for 0 <)< 2t,

S, :r(a’):Ej =R,
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e Suppose thereare Vv <t errors, and
_ J P )y
e(X)=¢; X*+e; X7 +:--¢, X

the error-location numbers are then o | o 2 . oV
e The error-location polynomial over GF(2™) is

o(X)=1-a"X)1l-a2X)---1-a’X)
=1l+o,X+---0, X"
which has a_jl,a_jz o °,0(_jv as roots. Hence,

0(0{"") =0, for 1<i<v (22)
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e \We may regard o(X) as the Fourier transform of a
polynomial over GF(2)

AX)=Ay+ A X+ + A X"
where
A=o(a?), for0<j<nl (23)

e From (22) and (23), we readily see that

A(X)e(X) =0 (24)
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e Thatlis,
Ai-e,=0, for 0<j<n-1  (25)

e Taking the Fourier transform of A(X)e(X) and using
(20), we have

n-1
ZGkEj_k =0, for 0<J<n-1 (26)
k=0

e Since the degree of o(X) Isv, thatis o, =0 fork >v.
e Then

Ej+01Ej_1+---+GVEj_V:O (27)
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e The preceding equation can be put in the following
form: for0<)<n-1

E=—(oE, ++0,E,) (28)

e Since E,, E,,... E, are already known, it follows
from (28) that for t+1 < | < n-1-t, we obtain the

following recursive equation for computing E, and
E2t+1 {0 En -1.

El+t: _(O-lEI+t—l+ il O El+t—v)
(29)

== (E b+ 0,4 )
O

v
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e The decoding consists of the following steps:
1) Take the Fourier transform R(X) of r(X).
2) Find o(X) (use the Berlekamp-Massy algorithm)
3) Compute E(X).

4) Take the inverse transform v(X) of V(X) = R(X) -
E(X).
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Example 7: Consider (15, 9, 7) RS code with symbols
from GF(2%). r(X) = a’X3 + a3X® + a*X12 is received.
The Fourier transform of r(X) is

R(X)=a"X + X?+a" X°+a™X* +a*X°
+ X"+ X+ X+ X+ X
+0(14X13+0510X14
The syndrome components: S;= a'?, S,=1, S;= al4,

S,;= al9 S.=0, S;= a!? They are also the spectral
components E; to Eg.
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Using the Berlekamp-Massy algorithm based on the
syndrome (S;, S,, ..., Sg), we find the error-location
polynomial

o(X)=1+a' X +a*X* +a® X"’

From (29), for 4 <1 < 11 , we obtain the following
recursion equation for computing E- to E;, and E;

E,.,=0E,,to,E+0;E

=a'E,,, +a’E, +a°E,
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1
E,=—(E;+0,E, +0,E,)

O3
=a*(E,+a'E, +a'E,)
=0

The resultant error spectral polynomial is

E(X)=a“X + X +a* X’ +a"”X* +a** X°
+ X +a X+ X X+ X

_I_al4x13+alOX14
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We find that R(X) = E(X), and V(X) = 0. Therefore, the
decoded codeword i1s that all-zero codeword. The
inverse transform of E(X) is e(X) = a’X3 + a3X® +
o4 X1z
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The Step-By-Step Decoding

e Trial and Error:

r :(rmrl’rz"'"rn—l)

| test It error

+ [
BeflLa,a’,---,a"}
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'S, S, S,
M |= det > 8.3 Sus £ 0
_Sv Sv+1 SZV—l_
N S, |
M, |= det > 83 S, =0 °?
S, S, o Sas
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The Step-By-Step Decoding

e In this decoding, we do not find the error-location
polynomial. Instead, we use the concept of the
error-trapping decoding.

e From (6), we define the syndrome matrix as
following:

S 9 S,
S S ... S
M \50) _ 2 :3 v+1 (30)
_Sv Sv+1 T S2v—1_

and §2(81182’”"Szt)
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e Theorem 4: For any binary BCH (n, k, t) code, and

any v such that 1<v<t , the v by v syndrome
matrix is singular if the number of errors is at most

v-1, and Is nonsingular if the number of errors is at
least v .

e The decision vector is defined

m=(m,m,,---,m)

where decision bit m, is calculated as

0 if det(M,)=0
1 if det(M,) =0

mV
mV
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e The decision vector of a general t-error-correcting
RS code can be determined as follows:

(1)if there are no errors, then
m = (0,0,---,0) = (0')
(2)1f there Is one error, then
m=(10,---,0) = (1,0%)
(3)if there are v errors, then
me{(X"21107)}
where the symbol X can be 0 or 1.
(4)if there are no less than t errors, then

me{(X"211)}
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e For example, 2-error-correcting RS codes, the
decision vector could be (0, 0) for no errors, (1, 0)
for smgle error, and (1, 1) for two errors.

p)

e Let v be codeword of a RS code, and v IS
also a codeword, which denotes the cycllcally
shifting p places to the rightof v . Thatis

V:(VO’Vl’...’Vn—l)

—(p)
v _(Vn—p’vn—p+1’“'Vn—l’VO"“’Vn—p—l)

2007/K/24 A T A B == A A 112



e Forp>0, '?isobtained by cyclically shifting
p places to the rightof r .

. —(p) . .
e The syndrome matrix for r ; + [ is defined as
follows:

_Sl(p)_|_ﬂ Sép)+,8 S\fp)+ﬂ_
v+1

Sép)-l-ﬂ Sép)‘F,B S(p)+ﬂ
; (31)

SP+p SP+p - S4B

v+1
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e The step-by-step decoding is iterative, which
contains the follow steps

(1) calculate syndrome vector, and find v such that
det(M;”) =1, andsetj=0.

(2) cyclically shift r one symbol one time, and
find its corresponding syndrome vector.

(3) let 8= od , and check whether det(M!®)=0.
(4) If det(MP)=0, then r'P(X)=rP(X)+ 2.
(5) Otherwise, J = J+1, do Step (2) again.
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Example 8: Consider 2-error-correcting (7,3) RS
code over GF(23) The generator polynomial is

g(X)=(X +a)(X +a*)(X +a’)(X +a*)
=a’+a X+ X +a’ X+ X*
Suppose the all-zero vector Is transmitted. And the
received sequence IS

r=(00000a «”)

r(X)=aX’+a°X°®

2007/5/24 A A BRI AL

115



SO =r(a)=aa’ +a’a® =a’

S =r(a®)=a(a’)’ +a’ (@)’ =a°
S =r(@®)=a(a’)’ +a’(a®)® =0
S =r(a')=al(a’)’ +a’(@")°’ =a’
'51(0) Séo)_ 22 b

By A P

det(M}”) = det(

5
=

which implies there are at least two errors in the
received sequence
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Cyclically shift r(X) one time, r®(X)=¢a" +aX®
IS obtain. And the corresponding syndrome is given

by

SY =rYa)=a’+aa’ =a’+1=a"
S =rYa®)=a

SO = r® (g% =0

det(M ) = det(

SO p SO
SO SP4p

:det(_a4 +B a+pf
a+f i
:a2ﬁ+1
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As S = a5, then det(M{Y)=0. The modified
cyclical received polynomial is

r9X)=rX)+ B =aX"®
After the 2nd time cyclical shift, r'®(X)=¢ is
obtained. The syndrome is given by
S =r(a)=«
=S
=S
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SO+5 SO p

det(M {?)) = det
( 2 ) (_Séz)—l—ﬂ Séz)—l—ﬂ_

_ det( a+ [ a+,b’)
a+f a+pf
=0 ( at most 1 error)

det(M?) =S + B=a + B (at least 1 error)

From two preceding equation, there is still one error
In the received sequence.
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As B = a, then det(M?) = 0. The modified cyclical
polynomial is given by

r92X)=r?(X)+ =0
Therefore, the corrected received polynomial is
r(xX)=0.
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* In fact, the step-by-step decoding can be easily
modified as a parallel decoding.

« Without cyclical shift, the received symbols r,_,,
r_o ... ,r_are checked in parallel. That is, only
one received symbols Is changed In a
corresponding decoding procedure by checking if
det(M,) = 0.

e For RS codes with a few error-correcting
capability, this parallel decoding Is feasible.
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6. Modified RS Codes

e Punctured Reed-Solomon codes:

In Theorem 3, it was shown that any combination of
k symbols in an (n, k) RS code can be treated as
message positions in a systematic representation.

An (n, k) RS code is thus punctured by deleting any
one of Its parity check symbols. The resulting (n-1, k)
code Is, in general, no longer cyclic, but it is MDS.

e Shortened RS codes:

A code Is shortened by deleting a message symbol
from the encoding process. This resulting (n-1, k-1)
code Is a shortened RS code, which is not cyclic, but it
Is MDS.

2007/5/24 A A BRI AL

1929



Example 9: These two (32, 28, 5) and (28, 24, 5)
RS codes are employed in the audio CD system.
Since each symbol is 8 bits, therefore these two RS
codes are shorten from the (255, 251, 5) by deleting
223 and 227 information symbols.

(255, 251, 5) delete 223 info. symbols (32, 28, 5)
] ) I ———————————————————
RS code RS code

(255, 251, 5) delete 227 info. symbols (28, 24, 5)
] ) I ———————————————————
RS code RS code
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e Extended RS codes: Any code can be extended
multiple times through the addition of parity check
symbols.

(1) Singly-extended RS code codes:
An (n, k) RS code can be extended to form a

noncyclic (n+1, k) MDS code by adding a parity
check. Each  codeword (c,,C,---,C, ;) thus
becomes (c',,C',---,C".) , where

¢,=c¢;,, for0<j<n-1

n-1
c'y=—> C,
j=0
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The corresponding parity check matrix is
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o

1
94
o
o

2t

1

2x2

3x2

2tx2
a

1

2x3

3x3

2tx3
94

n-1
2(n-1)

aS(n—l)

o O O O O B

2t(n-1)
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(2) Doubly-extended RS code codes:

An (n, k) RS code can be extended to form a no
cyclic (n+2, k) MDS code by adding two parity
checks. Each codeword (Cy.C;,-+-,C,) thus
becomes (¢',,C',,---,C'. ., ), Where

c.=c, for0<j<n-1

n-1
c'y=—> C;
j=0
n-1 _
Cln+1 _ _Z Cjaj(2t+1)
j=0

2007/K/24 A T A B == A A 176



The corresponding parity check matrix is

1
1
1
1

2007/K5/24

1
o
o

a

w

0(2t
0[2t +1

1

o
a2><2

3x2
04

athZ

o 22

1

3
04

g2x3

3x3
a

a2t><3

a(2t+l)x3

aZt(n—l)

o2

Q}P\

>

&
o O O O o o -
b O O O O O O
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7. Error Correcting Performance

e There are 3 figures shown in the following for
comparison of error correcting performance of
Reed-Solomon codes.

e In generally, the error performance of a shorten RS
code is better than that of a corresponding RS code,
which results from that at the same signal-to-noise
ratio and error correcting capability, the number of
errors In a shorter code is less than in a longer code.
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