REED-SOLOMON CODES

- 1. Introduction
- 2. Encoding of RS Codes
- 3. Properties of RS Codes
- 4. RS Codes for Binary Data
- 5. Decoding of RS Codes
- 6. Modified RS Codes
- 7. Error Correcting Performance
- 8. References

1. Introduction

- They are nonbinary cyclic codes with code symbols from a Galois field.
- Discovered in 1960 by I. Reed and G. Solomon.
- The most important Reed–Solomon (RS) codes are codes with symbols from $GF(2^m)$. They are widely used in data communications and storage systems for error control.

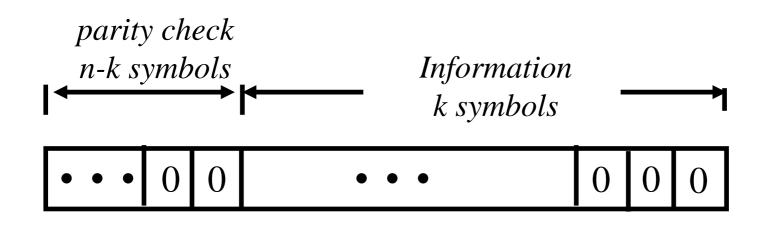
Singleton bound

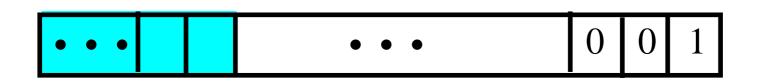
$$d_{min} \le n - k + 1$$
.

• One of the most important features of RS codes is that the minimum distance of a RS code is one greater than its number of parity-check symbols. That is, the minimum distance of an (n, k) RS code is n - k + 1, i.e.,

$$d_{min} = n - k + 1$$

Codes of this kind are called **maximum-distance-separable (MDS) codes**.





$$d_{\min} = n - k + 1$$

2. Encoding of RS codes

- Let α be a primitive element in $GF(2^m)$.
- For any positive integer $t \le 2^m 1$, there exists a t-symbol-error-correcting RS code with symbols from $GF(2^m)$ and the following parameters:

$$n = 2^{m} - 1$$

$$n - k = 2t$$

$$k = 2^{m} - 1 - 2t$$

$$d_{min} = 2t + 1.$$

• The generator polynomial is

$$g(X) = (X + \alpha)(X + \alpha^{2})...(X + \alpha^{2t})$$

$$= g_{0} + g_{1}X + g_{2}X^{2} + ... + g_{2t-1}X^{2t-1} + X^{2t}$$

where $g_i \in GF(2^m)$.

- Note that g(X) has α , α^2 , ..., α^{2t} as roots.
- Each code polynomial

$$v(X) = v_0 + v_1 X + v_2 X^2 + ... + v_{n-1} X^{n-1}$$

has coefficients from $GF(2^m)$ and is a multiple of the generator polynomial g(X).

- Let $c(X) = c_0 + c_1 X + c_2 X^2 + ... + c_{k-1} X^{k-1}$ be the message to be encoded where $c_i \in GF(2^m)$ and k = n 2t.
- Dividing $X^{2t}c(X)$ by g(X), we have

$$X^{2t}c(X) = a(X) \cdot g(X) + b(X)$$

where $b(X) = b_0 + b_1 X + ... + b_{2t-1} X^{2t-1}$ is the remainder.

• Then

$$v(X) = b(X) + X^{2t}c(X)$$

is the codeword for message c(X).

• The encoding circuit is shown in Figure 1.

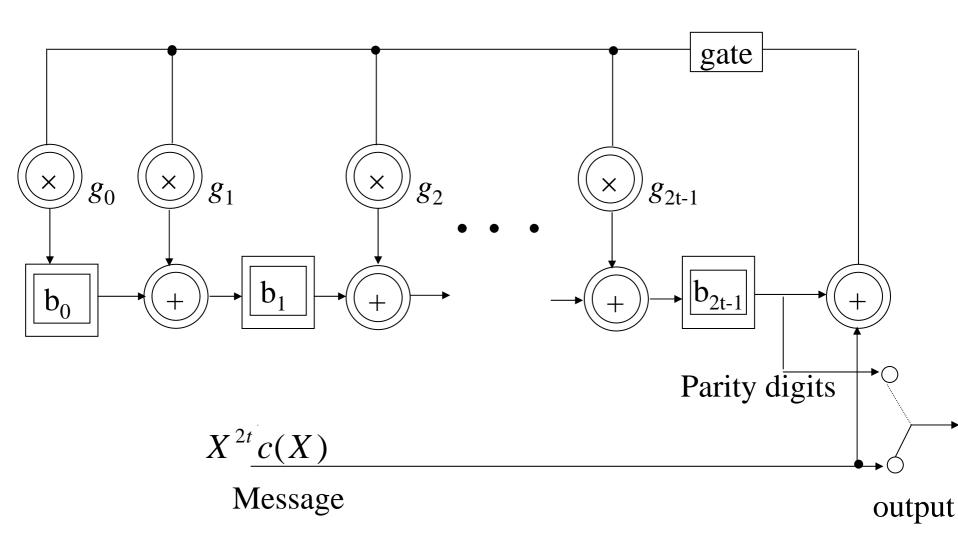


Figure 1: Encoding circuit for a nonbinary cyclic code

2007/5/24

• Let

$$c(X) = 1, X, \cdots, X^{k-1}$$

the corresponding remainder polynomials $b_i(X)$ are denoted by

$$b_i(X) = b_{i,0} + b_{i,1}X + \cdots + b_{i,2t-1}X^{2t-1}$$

for

$$0 \le i \le k-1$$

The corresponding generator matrix in systematic form is

$$G = \begin{bmatrix} b_{0,0} & b_{0,1} & \cdots & b_{0,2t-1} & 1 & 0 & \cdots & 0 \\ b_{1,0} & b_{1,1} & \cdots & b_{1,2t-1} & 0 & 1 & \cdots & 0 \\ & & & & & & & & \\ b_{k-1,0} & b_{k-1,1} & \cdots & b_{k-1,2t-1} & 0 & 0 & \cdots & 1 \end{bmatrix}$$

• Since (n, k, d_{min}) RS code is a cyclic code, the generator matrix in nonsystematic form is in the following

$$G = \begin{bmatrix} g_0 & g_1 & \cdots & g_{2t-1} & 1 & 0 & \cdots & 0 \\ 0 & g_0 & \cdots & g_{2t-2} & g_{2t-1} & 1 & \cdots & 0 \\ & & \cdots & & & & \\ 0 & 0 & \cdots & g_0 & g_1 & g_2 & \cdots & g_{2t-1} & 1 \end{bmatrix}$$

Example 1: Consider an (7, 5, 3) RS code over $GF(2^3)$ generated by $\alpha^3 + \alpha + 1 = 0$, where α is primitive element.

power	polynomial	vector
0	0	(0,0,0)
1	1	(1,0,0)
α	α	(0,1,0)
α^2	α^2	(0,0,1)
α^3	$1+\alpha$	(1,1,0)
$\alpha^{\!A}$	$\alpha + \alpha^2$	(0,1,1)
$lpha^5$	$1+\alpha+\alpha^2$	(1,1,1)
$lpha^6$	$1+\alpha^2$	(1,0,1)

The generator polynomial of (7, 5, 3) RS code is

$$g(X) = (X + \alpha)(X + \alpha^{2}) = \alpha^{3} + \alpha^{4}X + X^{2}.$$

And the generator matrix in nonsystematic form is

$$G = \begin{bmatrix} \alpha^3 & \alpha^4 & 1 & 0 & 0 & 0 & 0 \\ 0 & \alpha^3 & \alpha^4 & 1 & 0 & 0 & 0 \\ 0 & 0 & \alpha^3 & \alpha^4 & 1 & 0 & 0 \\ 0 & 0 & 0 & \alpha^3 & \alpha^4 & 1 & 0 \\ 0 & 0 & 0 & 0 & \alpha^3 & \alpha^4 & 1 \end{bmatrix}$$

Since

$$1 \cdot X^{2} = 1 \cdot g(X) + \alpha^{4}X + \alpha^{3}$$

$$X \cdot X^{2} = (X + \alpha^{4}) \cdot g(X) + X + 1$$

$$X^{2} \cdot X^{2} = (X^{2} + \alpha^{4}X + 1) \cdot g(X) + \alpha^{5}X + \alpha^{3}$$

$$X^{3} \cdot X^{2} = (X^{3} + \alpha^{4}X^{2} + X + \alpha^{5}) \cdot g(X) + \alpha^{5}X + \alpha$$

$$X^{4} \cdot X^{2} = (X^{4} + \alpha^{4}X^{3} + X^{2} + \alpha^{5}X + \alpha^{5}) \cdot g(X) + \alpha^{4}X + \alpha$$

therefore, the generator matrix in systematic form is

$$G = \begin{bmatrix} \alpha^3 & \alpha^4 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ \alpha^3 & \alpha^5 & 0 & 0 & 1 & 0 & 0 \\ \alpha & \alpha^5 & 0 & 0 & 0 & 1 & 0 \\ \alpha & \alpha^4 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$
$$= [P, I_5]$$

3. Properties of RS Codes

Theorem 1:

• Let a code polynomial be

$$v(X) = v_0 + v_1 X + ... + v_{n-1} X^{n-1}$$

which has $\alpha, \alpha^2, \dots, \alpha^{2t}$ as roots.

• Since α^i is a root of v(X), then

$$v(\alpha^{i}) = v_0 + v_1 \alpha^{i} + ... + v_{n-1} \alpha^{i(n-1)} = 0$$

This equality can be written as a matrix product as follows:

$$(v_0, v_1, \dots, v_{n-1}) \cdot \begin{bmatrix} 1 \\ \alpha^i \\ \alpha^{2i} \\ \vdots \\ \alpha^{(n-1)i} \end{bmatrix} = 0$$

If $\overline{v} = (v_0, v_1, \dots, v_{n-1})$, then the parity check matrix H is

and
$$\overline{v} \cdot H^T = \underbrace{(0,0,\cdots 0)}_{(n-k)'s}$$

$$H = \begin{bmatrix} 1 & \alpha & \alpha^{2} & \alpha^{3} & \cdots & \alpha^{n-1} \\ 1 & \alpha^{2} & \alpha^{2\times 2} & \alpha^{2\times 3} & \cdots & \alpha^{2(n-1)} \\ 1 & \alpha^{3} & \alpha^{3\times 2} & \alpha^{3\times 3} & \cdots & \alpha^{3(n-1)} \\ \vdots & & & & \ddots & \vdots \\ 1 & \alpha^{2t} & \alpha^{2t\times 2} & \alpha^{2t\times 3} & \cdots & \alpha^{2t(n-1)} \end{bmatrix}$$

$$(4.1)$$

2007/5/24

大葉大學電信系胡大湘

Example 2: Consider an (7, 5, 3) RS code mentioned in Example 1, the parity check matrix is

$$H = \begin{bmatrix} 1 & \alpha & \alpha^{2} & \alpha^{3} & \alpha^{4} & \alpha^{5} & \alpha^{6} \\ 1 & \alpha^{2} & \alpha^{4} & \alpha^{6} & \alpha & \alpha^{3} & \alpha^{5} \end{bmatrix} + \begin{bmatrix} 1 & \alpha & \alpha^{2} & \alpha^{3} & \alpha^{4} & \alpha^{5} & \alpha^{6} \\ 0 & \alpha^{4} & \alpha & \alpha^{4} & \alpha^{2} & \alpha^{2} & \alpha^{3} \end{bmatrix} + \begin{bmatrix} 1 & \alpha & \alpha^{2} & \alpha^{3} & \alpha^{4} & \alpha^{5} & \alpha^{6} \\ 0 & 1 & \alpha^{4} & 1 & \alpha^{5} & \alpha^{5} & \alpha^{4} \end{bmatrix} + \begin{bmatrix} 1 & \alpha & \alpha^{2} & \alpha^{3} & \alpha^{4} & \alpha^{5} & \alpha^{6} \\ 0 & 1 & \alpha^{4} & 1 & \alpha^{5} & \alpha^{5} & \alpha^{4} \end{bmatrix} + \begin{bmatrix} 1 & 0 & \alpha^{3} & 1 & \alpha^{3} & \alpha & \alpha \\ 0 & 1 & \alpha^{4} & 1 & \alpha^{5} & \alpha^{5} & \alpha^{4} \end{bmatrix} = [I_{2}, P^{T}]$$

Theorem 2:

The dual code of an (n, k, d_{min}) RS code is still a **maximum-distance-separable (MDS) code,** whose code length is n, and information length is n - k, and minimum Hamming distance is n - (n - k) + 1 = k + 1.

Theorem 3[2]:

Any combination of k symbols in a codeword in an MDS code may be used as message symbols in a systematic representation. In other words, we use these k symbols to recovery the whole codeword.

Example 3: Let a codeword generated is shown in the following.

$$\bar{v} = (\alpha \ 1 \ 1 \ 0 \ 0) \cdot \begin{bmatrix} \alpha^3 & \alpha^4 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ \alpha^3 & \alpha^5 & 0 & 0 & 1 & 0 & 0 \\ \alpha & \alpha^5 & 0 & 0 & 0 & 1 & 0 \\ \alpha & \alpha^4 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$= (\alpha^2 \ 1 \ \alpha \ 1 \ 1 \ 0 \ 0)$$

2007/5/24

Assume there are some misses in transmission, we only get

We use these 5 symbols as a message symbols

From above, we use the portion of data to obtain the whole codeword. Based on the data positions, we permute the generator matrix as the following form.

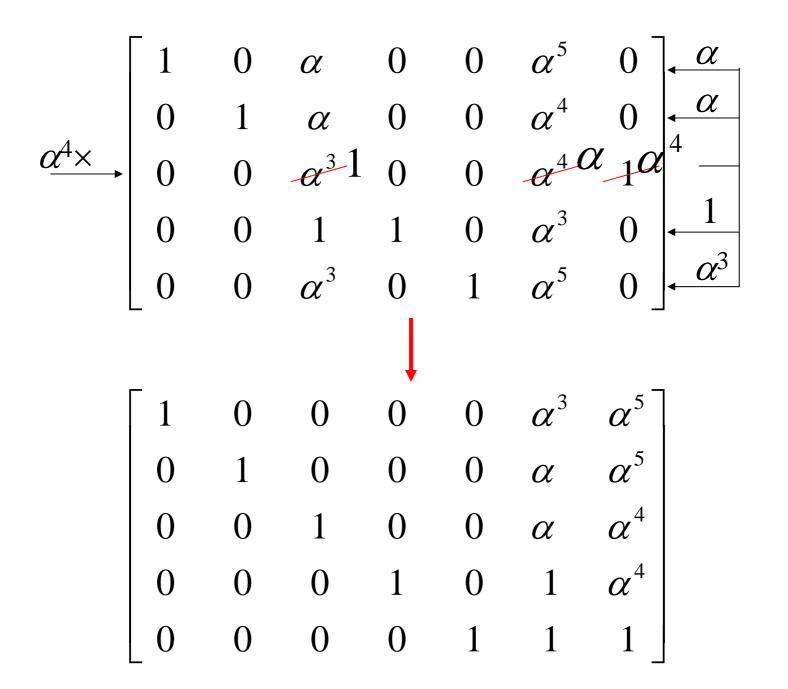
$$G = \begin{bmatrix} \alpha^3 & \alpha^4 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1 & 0 \\ \alpha^3 & \alpha^5 & 0 & 0 & 0 & 0 & 1 \\ \alpha & \alpha^5 & 0 & 1 & 0 & 0 & 0 \\ \alpha & \alpha^4 & 0 & 0 & 1 & 0 & 0 \end{bmatrix}$$

In the following steps, we show the raw operations to obtain a new systematic form



2007/5/24

大葉大學電信系胡大湘



$$\bar{v}' = (\alpha^2 \quad 1 \quad \alpha \quad 0 \quad 0) \cdot \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & \alpha^3 & \alpha^5 \\ 0 & 1 & 0 & 0 & 0 & \alpha & \alpha^5 \\ 0 & 0 & 1 & 0 & 0 & \alpha & \alpha^4 \\ 0 & 0 & 0 & 1 & 0 & 1 & \alpha^4 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 \end{bmatrix}$$

$$=(\alpha^2 \ 1 \ \alpha \ 0 \ 0 \ 1 \ 1)$$

Inverse permutation

$$\bar{v} = (\alpha^2 \ 1 \ \alpha \ 1 \ 1 \ 0 \ 0)$$

2007/5/24

4. RS Codes for Binary Data

- Every element in $GF(2^m)$ can be represented uniquely by a binary m-tuple, called a m-bit byte.
- Suppose an (n, k, d_{min}) RS code with symbols from $GF(2^m)$ is used for encoding binary data.
- A message of $k \times m$ bits is first divided into k m-bit bytes.
- Each m-bit byte is regarded as a symbol in $GF(2^m)$.
- The k-byte message is then encoded into an n-byte codeword based on the RS code.

- By doing this, we actually expand a RS code with symbols from $GF(2^m)$ into a binary (nm, km) linear code, called a binary RS code.
- To decode, the binary received vector at the channel output is first divided into n m-bit bytes. Each m-bit bytes is transformed back into a symbol in $GF(2^m)$.
- The resultant vector over $GF(2^m)$ is then decoded based on the RS code.
- As a result, the binary RS code is capable of correcting any error pattern that affects *t* (or fewer) *m*-bit bytes. It is immaterial whether a byte has one error or *m* errors, it is counted as one byte (or symbol) error.

• Binary RS codes are very effective in correcting bursts of errors as long as no more *t* bytes are affected.

5. Decoding of RS Codes

- 1. Syndrome-based decoding
 - Peterson-Gorenstein-Zierler Algorithm[2]
 - Berlekamp-Massey Algorithm[1][2]
 - Euclidean Algorithm[1][2]
 - Frequency Domain Algorithm[1][2]
 - Step-by-Step Algorithm[3]-[6]

- 2. Interpolation-based decoding
 - Welch-Berlekamp algorithm[7][8]
 - List decoding[9]

Syndrome-based decoding

Decoding Procedure:

- (1) Compute syndrome vector $\overline{S} = (S_1, S_2, ..., S_{2t})$.
- (2) Determine error-location polynomial $\sigma(X)$.
- (3) Determine error-value evaluator polynomial Z(X)
- (4) Evaluate error-location numbers (find roots of $\sigma(X)$) and error values and perform error correction.

- RS codes are actually a special subclass of nonbinary BCH codes.
- Decoding of a RS code is similar to the decoding of a BCH code except an additional step is needed.
- Let

$$v(X) = v_0 + v_1 X + ... + v_{n-1} X^{n-1}$$

and

$$r(X) = r_0 + r_1 X + ... + r_{n-1} X^{n-1} = v(X) + e(X)$$

be the transmitted code polynomial and received polynomial respectively.

• Then the error polynomial is

$$e(X) = r(X) - v(X)$$

$$= e_0 + e_1 X + \dots + e_{n-1} X^{n-1}$$

where $e_i = r_i - v_i$ is a symbol in GF(2^m).

Syndrome Computation

ullet The syndrome of a received polynomial r(X) is

$$\overline{S} = (S_1, S_2, ..., S_{2t})$$
where $S_i = r(\alpha^i)$.

• To find S_i , we divide r(X) by $X+\alpha^i$. This gives us

$$r(X) = a(X) \cdot (X + \alpha^{i}) + b_{i}$$

where $b_i \in GF(2^m)$.

• Then $S_i = r(\alpha^i) = b_i$ $= e_{j_1} \alpha^{i \times j_1} + e_{j_2} \alpha^{i \times j_2} + \cdots + e_{j_v} \alpha^{i \times j_v}$ $= e_{j_1} \beta_1^i + e_{j_2} \beta_2^i + \cdots + e_{j_v} \beta_v^i$

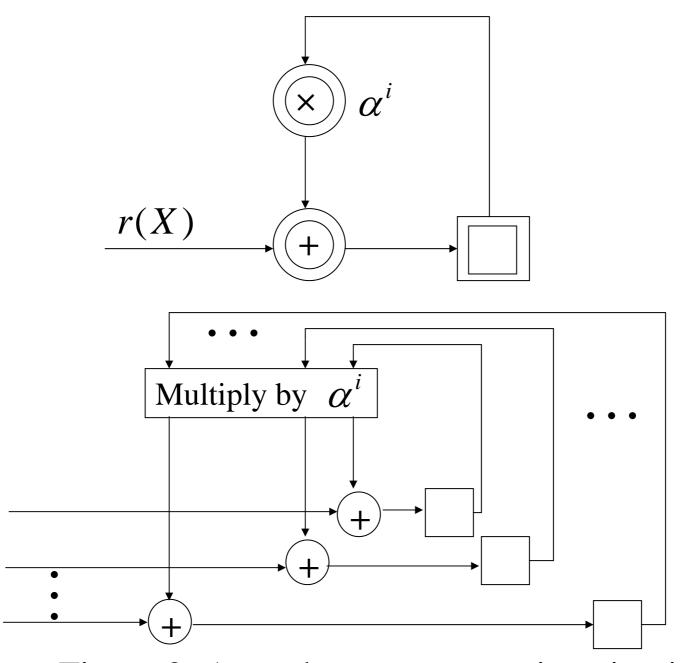


Figure 2: A syndrome computation circuit

• Suppose e(X) has v errors at the locations $X^{j_1}, X^{j_2}, \dots, X^{j_\nu}$. Then

$$e(X) = e_{j_1} X^{j_1} + e_{j_2} X^{j_2} + \cdots + e_{j_v} X^{j_v}$$

• The syndromes are computed as follows:

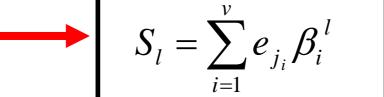
$$S_{1} = e_{j_{1}} \beta_{1} + e_{j_{2}} \beta_{2} + \cdots + e_{j_{v}} \beta_{v}$$

$$S_{2} = e_{j_{1}} \beta_{1}^{2} + e_{j_{2}} \beta_{2}^{2} + \cdots + e_{j_{v}} \beta_{v}^{2}$$

$$\vdots$$

$$S_{2t} = e_{j_{1}} \beta_{1}^{2t} + e_{j_{2}} \beta_{2}^{2t} + \cdots + e_{j_{v}} \beta_{v}^{2t}$$

$$(1)$$



error-location polynomial

•And error-location numbers are given by

$$eta_{j_1} = lpha^{j_1}, \qquad eta_{j_1} = eta_1, \ eta_{j_2} = lpha^{j_2}, \qquad ext{for convenience} \ eta_{j_2} = eta_2 \ dots \ eta_{j_v} = eta_v. \ eta_{j_v} = eta_v.$$

• The error-location polynomial is defined by

$$\sigma(X) \stackrel{\Delta}{=} (1 - \beta_1 X)(1 - \beta_2 X^2) \cdots (1 - \beta_\nu X^\nu)$$

$$= 1 + \sigma_1 X + \dots + \sigma_\nu X^\nu$$
(2)

- The error locator numbers are the reciprocals of the roots of the error-locator polynomial $\sigma(X)$.
- Let $X = \beta_i^{-1}$ in (2), and we obtain the following equation

$$\sigma(\beta_i^{-1}) = 1 + \sigma_1 \beta_i^{-1} + \dots + \sigma_{\nu} \beta_i^{-\nu} = 0$$

• Since the expression sums to zero, we cam multiply through by a constant e_i , β_i^l .

$$e_{j_{i}}\beta_{i}^{l}(1+\sigma_{1}\beta_{i}^{-1}+\cdots+\sigma_{v}\beta_{i}^{-v})$$

$$=e_{j_{i}}(\beta_{i}^{l}+\sigma_{1}\beta_{i}^{l-1}+\cdots+\sigma_{v}\beta_{i}^{l-v})=0$$
(3)

• Sum (3) over all indices i, obtaining an following expression which is called "Newton's identities"

$$\sum_{i=1}^{v} e_{j_{i}} (\beta_{i}^{l} + \sigma_{1} \beta_{i}^{l-1} + \dots + \sigma_{v} \beta_{i}^{l-v})$$

$$= \sum_{i=1}^{v} e_{j_{i}} \beta_{i}^{l} + \sigma_{1} \sum_{i=1}^{v} e_{j_{i}} \beta_{i}^{l-1} + \dots + \sigma_{v} \sum_{i=1}^{v} e_{j_{i}} \beta_{i}^{l-v}$$

$$= S_{l} + \sigma_{1} S_{l-1} + \dots + \sigma_{v} S_{l-v}$$

$$= 0$$

Peterson-Gorenstein-Zierler Decoding Algorithm

• Matrix method: there are v errors

$$\overline{A\sigma} = \overline{S} \longrightarrow \overline{\sigma} = A^{-1}\overline{S}$$

$$\sigma(X) = 1 + \sigma_1 X + \dots + \sigma_v X^v$$

$$\overline{\sigma} = [\sigma_1, \dots, \sigma_v]^T$$

$$\overline{S} = [S_{v+1}, \dots, S_{2v}]^T$$

$$Be = \overline{S} \longrightarrow e = B^{-1}\overline{S}$$

$$\overline{\overline{S}} = [e_1, \dots, e_v]^T$$

$$\overline{\overline{S}} = [S_1, \dots, S_v]^T$$

Peterson-Gorenstein-Zierler Decoding Algorithm

• In (4), if we assume v = t and $t + 1 \le l \le 2t$, then

$$\sigma_{1}S_{t} + \sigma_{2}S_{t-1} \cdots + \sigma_{t}S_{1} = -S_{t+1}$$

$$\sigma_{1}S_{t+1} + \sigma_{2}S_{t} \cdots + \sigma_{t}S_{2} = -S_{t+2}$$

$$\vdots$$

$$\sigma_{1}S_{2t-1} + \sigma_{2}S_{2t-2} \cdots + \sigma_{t}S_{t} = -S_{2t}$$
(5)

$$A\overline{\sigma} = \begin{bmatrix} S_1 & S_2 & \cdots & S_t \\ S_2 & S_3 & \cdots & S_{t+1} \\ \vdots & & & \\ S_t & S_{t+1} & \cdots & S_{2t-1} \end{bmatrix} \begin{bmatrix} \sigma_t \\ \sigma_{t-1} \\ \vdots \\ \sigma_1 \end{bmatrix} = \begin{bmatrix} S_{t+1} \\ S_{t+2} \\ \vdots \\ S_{2t} \end{bmatrix}$$
(6)

- It can be shown that the matrix A is nonsingular if the received sequence contains t errors.
- It can also be shown that the matrix A is singular if fewer than t errors have occurred.

- If the matrix A is singular, the rightmost column and bottom row are removed and the determinant of the resulting matrix computed.
- This process is repeated until the resulting matrix is nonsingular.
- The coefficients of the error locator polynomial $\sigma(X)$ can be calculated by "Gaussian elimination" or the inverse matrix method over $GF(2^m)$.

- Once the error locator polynomial $\sigma(X)$ is determined, and the roots of $\sigma(X)$ are then computed.
- The error locator numbers β_i , $1 \le i \le v$, are the reciprocals of the roots of the error-locator polynomial $\sigma(X)$.
- From (1),

$$\begin{bmatrix} \beta_{1} & \beta_{2} & \cdots & \beta_{v} \\ \beta_{1}^{2} & \beta_{2}^{2} & \cdots & \beta_{v}^{2} \\ \vdots & \vdots & \vdots \\ \beta_{1}^{v} & \beta_{2}^{v} & \cdots & \beta_{v}^{v} \end{bmatrix} \begin{bmatrix} e_{i_{1}} \\ e_{i_{2}} \\ \vdots \\ e_{i_{v}} \end{bmatrix} = \begin{bmatrix} S_{1} \\ S_{2} \\ \vdots \\ S_{v} \end{bmatrix}$$
(7)

- Decoding is completed by solving for the $\{e_{i_i}\}$
- If roots of $\sigma(X)$ are not distinct or roots do not exist, then declare a decoding failure.

Example 4: Consider an (7, 3, 5) RS code, its generator polynomial is

$$g(X) = (X + \alpha)(X + \alpha^{2})(X + \alpha^{3})(X + \alpha^{4})$$
$$= \alpha^{3} + \alpha X + X^{2} + \alpha^{3}X^{3} + X^{4}$$

Assume the received sequence is

$$r(X) = X^4 + X^2 + \alpha X + \alpha^3$$

The syndromes are

$$S_1 = r(\alpha) = \alpha^6$$
, $S_2 = r(\alpha^2) = \alpha^2$
 $S_3 = r(\alpha^3) = \alpha^5$, $S_4 = r(\alpha^4) = \alpha^2$

2007/5/24

The matrix A in (6) is given by

$$A = \begin{bmatrix} \alpha^6 & \alpha^2 \\ \alpha^2 & \alpha^5 \end{bmatrix}$$

Since

$$\det(A) = 0$$

We remove the rightmost column and bottom row from *A*, then

$$\alpha^{6}\sigma_{1} = \alpha^{2} \longrightarrow \sigma_{1} = \alpha^{3}$$

$$\longrightarrow \beta_{1} = \alpha^{3}$$

From (7), we obtain the following

$$\alpha^3 e_3 = \alpha^6$$

which gives the error magnitude α^3 . The error polynomial is thus

$$e(X) = \alpha^3 X^3$$

The coded sequence is

$$v(X) = r(X) - e(X)$$

= $\alpha^{3} + \alpha X + X^{2} + \alpha^{3}X^{3} + X^{4}$

Berlekamp-Massey Decoding Algorithm

• Iterative method: at u-th step

$$\sigma^{(u)}(X) = 1 + \sigma_1^{(u)} X + \sigma_2^{(u)} X^2 + \dots + \sigma_{l_u}^{(u)} X^{l_u}$$

$$\downarrow$$

$$\sigma(X) = \sigma^{(2t)}(X) = 1 + \sigma_1 X + \dots + \sigma_v X^v$$

• Initially, $\sigma^{(1)}(X) = 1 + S_1 X$

• At u+1-th step:

$$\sigma^{(u+1)}(X) = \sigma^{(u)}(X) + \Delta$$

• At final step (u = 2t):

$$\sigma(X) = \sigma^{(2t)}(X) = 1 + \sigma_1 X + \dots + \sigma_v X^v$$

Berlekamp-Massey Decoding Algorithm

- $\sigma(X)$ can be computed iteratively.
- The iteration process consists of 2t steps.
- At the *u*-th step, we determine a minimum-degree polynomial

$$\sigma^{(u)}(X) = 1 + \sigma_1^{(u)}X + \sigma_2^{(u)}X^2 + \cdots + \sigma_{l_u}^{(u)}X^{l_u}$$

such that its coefficients satisfy the following u- l_u Newton's identities:

$$S_{l_{u}+1} + \sigma_{1}^{(u)} S_{l_{u}} + \dots + \sigma_{l_{u}}^{(u)} S_{1} = 0$$

$$S_{l_{u}+2} + \sigma_{1}^{(u)} S_{l_{u}+1} + \dots + \sigma_{l_{u}}^{(u)} S_{2} = 0$$

$$\vdots$$

$$S_{u} + \sigma_{1}^{(u)} S_{u-1} + \dots + \sigma_{l_{u}}^{(u)} S_{u-l_{u}} = 0$$

• The next step is to find a new polynomial of minimum degree

$$\sigma^{(u+1)}(X) = 1 + \sigma_1^{(u+1)}X + \dots + \sigma_{l_{u+1}}^{(u+1)}X^{l_{u+1}}$$

whose coefficients satisfy the following $u+1-l_{u+1}$ Newton's identities:

$$\begin{split} S_{l_{u+1}+1} + \sigma_1^{(u+1)} S_{l_{u+1}} + \cdots + \sigma_{l_{u+1}}^{(u+1)} S_1 &= 0 \\ S_{l_{u+1}+2} + \sigma_1^{(u+1)} S_{l_{u+1}+1} + \cdots + \sigma_{l_{u+1}}^{(u+1)} S_2 &= 0 \\ \vdots \\ S_{u+1} + \sigma_1^{(u+1)} S_u + \cdots + \sigma_{l_{u+1}}^{(u+1)} S_{u+1-l_{u+1}} &= 0 \end{split}$$

• We continue the foregoing process until 2t steps have been completed. At the 2t-th, we have

$$\sigma(X) = \sigma^{(2t)}(X)$$

• In u+1-th iteration, $\sigma^{(u+1)}(X)$ is found by testing the discrepancy:

$$d_{u} = S_{u+1} + \sigma_{1}^{(u)} S_{u} + \sigma_{2}^{(u)} S_{u-1} + \dots + \sigma_{l_{u}}^{(u)} S_{u+1-l_{u}}$$

• If $d_u = 0$, then the coefficients of $\sigma^{(u)}(X)$ satisfies the (u + 1)-th Newton's identity

$$\sigma^{(u+1)}(X) = \sigma^{(u)}(X)$$

 $l_{n+1} = l_n$ (actually, l_n is the degree of $\sigma^{(u)}(X)$)

- If $d_u \neq 0$, $\sigma^{(u)}(X)$ needs to be adjusted to satisfy the (u+1)-th Newton's identity
- Correction: we go back to the steps prior to the u-th step and determine a polynomial $\sigma^{(p)}(X)$ such that $d_p \neq 0$ and $p l_p$ has the largest value, where l_p is the degree of $\sigma^{(p)}(X)$. Then

$$\sigma^{(u+1)}(X) = \sigma^{(u)}(X) + d_u d_p^{-1} X^{(u-p)} \sigma^{(p)}(X)$$

• $\sigma^{(u+1)}(X)$ is the solution at the (u+1)-th step of the iteration process.

Error-Value Evaluator Polynomial

• Once $\sigma(X) = \sigma_1 + \sigma_2 X + \dots + \sigma_{\nu} X^{\nu}$ has been found, we form

$$Z(X) = 1 + (S_1 + \sigma_1)X + (S_2 + \sigma_1 S_1 + \sigma_2)X^2 + \dots + (S_v + \sigma_1 S_{v-1} + \dots + \sigma_{v-1} S_1 + \sigma_v)X^v$$
(8)

• Let
$$\sigma'(X) = \frac{d\sigma(X)}{dX}$$

• Then the error value at location $\beta_l = \alpha^{j_l}$ is

$$e_{j_{l}} = \frac{Z(\beta_{l}^{-1})}{\beta_{l}^{-1}\sigma'(\beta_{l}^{-1})} = \frac{Z(\beta_{l}^{-1})}{\prod_{\substack{i=1\\i\neq l}}^{\nu} (1+\beta_{i}\beta_{l}^{-1})}$$
(9)

Execution of the Iteration Process

- Note that $\sigma^{(1)}(X) = 1 + S_1 X$ satisfies the first Newton's identity.
- To carry out the iteration, we set up a table as below and fill out the table:

и	$\sigma^{(u)}(X)$	d_u	l_u	u - l_u
-1	1	1	0	-1
0	1	S_1	0	0
1	$1+S_1X$			
2t				

Example 5: Consider (15, 9, 7) RS code with symbols from GF(2⁴). The generator polynomial of this code is

$$g(X) = (X + \alpha)(X + \alpha^{2})(X + \alpha^{3})(X + \alpha^{4})(X + \alpha^{5})(X + \alpha^{6})$$
$$= \alpha^{6} + \alpha^{9}X + \alpha^{6}X^{2} + \alpha^{4}X^{3} + \alpha^{14}X^{4} + \alpha^{10}X^{5} + X^{6}$$

Let the all zero-vector be the transmitted code vector and let

$$\bar{r} = (0\ 0\ 0\ \alpha^7\ 0\ 0\ \alpha^3\ 0\ 0\ 0\ 0\ \alpha^4\ 0\ 0)$$

Thus,

$$r(X) = \alpha^7 X^3 + \alpha^3 X^6 + \alpha^4 X^{12}$$

Step 1. The syndrome components are computed as follows

$$S_1 = r(\alpha) = \alpha^{10} + \alpha^9 + \alpha = \alpha^{12}$$
 $S_2 = r(\alpha^2) = \alpha^{13} + 1 + \alpha^{13} = 1$
 $S_3 = r(\alpha^3) = \alpha + \alpha^6 + \alpha^{10} = \alpha^{14}$
 $S_4 = r(\alpha^4) = \alpha^4 + \alpha^{12} + \alpha^7 = \alpha^{10}$
 $S_5 = r(\alpha^5) = \alpha^7 + \alpha^3 + \alpha^4 = 0$
 $S_6 = r(\alpha^6) = \alpha^{10} + \alpha^9 + \alpha = \alpha^{12}$

Step 2. To find the error-location polynomial $\sigma(X)$, we fill out the following table (mentioned in the BCH lecture), and $\sigma(X) = 1 + \alpha^7 X + \alpha^4 X^2 + \alpha^6 X^3$

и	$\sigma^{(u)}(X)$	d_u	l_u	u - l_u
-1	1	1	0	-1
0	1	$lpha^{12}$	0	0 (take $p = -1$)
1	$1+ \alpha^{12} X$	$lpha^7$	1	0 (take $p = 0$)
2	$1+\alpha^3 X$	1	1	1 (take $p = 0$)
3	$1+\alpha^3X+\alpha^3X^2$	$lpha^7$	2	1 (take $p = 2$)
4	$1+\alpha^4X+\alpha^{12}X^2$	$lpha^{10}$	2	2 (take $p = 3$)
5	$1 + \alpha^4 X + \alpha^3 X^2 + \alpha^{13} X^3$	α^{13}	3	2(take p = 4)
6	$1+\alpha^7X+\alpha^4X^2+\alpha^6X^3$	-	-	-

Step 3.

$$\sigma(\alpha^3) = 0 \qquad (\alpha^3)^{-1} = \alpha^{12} = \beta_1$$

$$\sigma(\alpha^9) = 0 \longrightarrow (\alpha^9)^{-1} = \alpha^6 = \beta_2$$

$$\sigma(\alpha^{12}) = 0 \qquad (\alpha^{12})^{-1} = \alpha^3 = \beta_3$$

errors occur at positions X^3 , X^6 , X^{12} .

Step 4. From (8) we find that

$$Z(X) = 1 + \alpha^2 X + X^2 + \alpha^6 X^3$$

Using (9), we obtain the error values at locations X^3 , X^6 and X^{12} :

$$e_{3} = \frac{1 + \alpha^{2} \alpha^{-3} + \alpha^{-6} + \alpha^{6} \alpha^{-9}}{(1 + \alpha^{6} \alpha^{-3})(1 + \alpha^{12} \alpha^{-3})} = \frac{\alpha^{13}}{\alpha^{6}} = \alpha^{7}$$

$$e_{6} = \frac{1 + \alpha^{2} \alpha^{-6} + \alpha^{-12} + \alpha^{6} \alpha^{-18}}{(1 + \alpha^{3} \alpha^{-6})(1 + \alpha^{12} \alpha^{-6})} = \frac{\alpha^{12}}{\alpha^{9}} = \alpha^{3}$$

$$e_{12} = \frac{1 + \alpha^{2} \alpha^{-12} + \alpha^{-24} + \alpha^{6} \alpha^{-36}}{(1 + \alpha^{3} \alpha^{-12})(1 + \alpha^{6} \alpha^{-12})} = \frac{\alpha^{9}}{\alpha^{5}} = \alpha^{4}$$

Thus, the error pattern is

$$e(X) = \alpha^7 X^3 + \alpha^3 X^6 + \alpha^4 X^{12}$$

The decoding is completed by taking

$$v(X) = r(X) - e(X) = 0$$

Euclidean Decoding Algorithm

• Great Common Division (GCD):

$$Z_0(X) = \sigma(X)S(X) \bmod X^{2t}$$

where

 $Z_0(X)$: error-value evaluator polynomial

 $\sigma(X)$: error-location polynomial

S(X): syndrome polynomial

Euclidean Decoding Algorithm

• Consider the product $\sigma(X)S(X)$,

$$\sigma(X)S(X) = (1 + \sigma_1 X + \dots + \sigma_v X^v) \cdot (S_1 + S_2 X + S_3 X^2 + \dots)$$

$$= S_1 + (S_2 + \sigma_1 S_1)X + (S_3 + \sigma_1 S_2 + \sigma_2 S_1)X^2 + \dots +$$

$$(S_{2t} + \sigma_1 S_{2t-1} + \dots + \sigma_v S_{2t-v})X^{2t-1} + \dots$$

• We define the other error-value evaluator polynomial $Z_0(X)$

$$Z_0(X) \stackrel{\Delta}{=} \sigma(X) S(X) \operatorname{mod} X^{2t}$$

$$Z_{0}(X) = S_{1} + (S_{2} + \sigma_{1}S_{1})X +$$

$$(S_{3} + \sigma_{1}S_{2} + \sigma_{2}S_{1})X^{2} + \cdots$$

$$+ (S_{\nu} + \sigma_{1}S_{\nu-1} + \cdots + \sigma_{\nu-1}S_{1})X^{\nu-1}$$

$$(10)$$

• Why does the degree of $Z_0(X)$ be v-1?

• We know that the syndrome polynomial S(X) is

$$S(X) \stackrel{\Delta}{=} S_1 + S_2 X + \dots + S_{2t} X^{2t-1} + \dots$$

$$= \sum_{l=1}^{\infty} S_l X^{l-1}$$
(11)

• Note that only the coefficients of the first 2t are known.

• Combining (1) and (11), we can put S(X) in the following form:

$$S(X) = \sum_{l=1}^{\infty} X^{l-1} \sum_{i=1}^{\nu} e_{j_i} \beta_i^l$$

$$= \sum_{i=1}^{\nu} e_{j_i} \beta_i \sum_{l=1}^{\infty} (\beta_i X)^{l-1}$$

$$= \sum_{i=1}^{\nu} \frac{e_{j_i} \beta_i}{1 - \beta_i X}$$
(12)

• From the definition of $Z_0(X)$, using (2) and (12), we obtain the following equation:

$$\sigma(X)S(X) = \left\{ \prod_{j=1}^{v} (1 - \beta_{j}X) \right\} \cdot \left\{ \sum_{i=1}^{v} \frac{e_{j_{i}}\beta_{i}}{1 - \beta_{i}X} \right\}$$

$$= \sum_{i=1}^{v} e_{j_{i}}\beta_{i} \prod_{j=1, j \neq i}^{v} (1 - \beta_{j}X)$$

$$= Z_{0}(X)$$
(13)

• Since for every i, there are exactly v-1 productions, therefore the degree of $Z_0(X)$ is v-1.

- The coefficients of the degree v to 2t-1 in $Z_0(X)$ are zeros, which satisfy (5) and are call "Newton's identities".
- The error value e_{j_i} at location β_i is determined by

$$e_{j_i} = \frac{-Z_0(\beta_i^{-1})}{\sigma'(\beta_i^{-1})}$$
(14)

• A slightly different error-value evaluator shown in (8) is

$$Z(X) = \sigma(X) + XZ_0(X)$$

• We can express the definition of $Z_0(X)$, which is called the key equation in the following form:

$$\sigma(X)S(X) = Q(X)X^{2t} + Z_0(X)$$

• Rearrange the above equation, we have

$$Z_0(X) = -Q(X)X^{2t} + \sigma(X)S(X)$$
 (15)

• We see that (15) is exactly in the following form

$$Z_0(X) = GCD(X^{2t}, S(X))$$

$$= -Q(X)X^{2t} + \sigma(X)S(X)$$
(16)

where GCD denotes the greatest common divisor.

For example,

$$4 = GCD(112, 100)$$

$$4 = 100 - 8 \times 12$$

$$= 100 - 8 \times (112 - 100)$$

$$= -8 \times 112 + 9 \times 100$$

For example,
$$1 = GCD(X^6, X^3+1)$$

 $= X^3 + X^3+1$
 $= X^6 + X^3(X^3+1) + (X^3+1)$
 $= X^6 + (X^3+1)(X^3+1)$

• This decoding method is based on the Euclidean algorithm for finding the GCD. This suggests that $\sigma(X)$ and $Z_0(X)$ can be found by Euclidean iterative division algorithm in following form:

• At *i*-th step, we have

$$Z_0^{(i)}(X) = \gamma^{(i)}(X)X^{2t} + \sigma^{(i)}(X)S(X) \tag{17}$$

and

$$Z_0^{(i)}(X) = Z_0^{(i-2)}(X) - q_i(X)Z_0^{(i-1)}(X)$$

$$\sigma^{(i)}(X) = \sigma^{(i-2)}(X) - q_i(X)\sigma^{(i-1)}(X)$$

$$\gamma^{(i)}(X) = \gamma^{(i-2)}(X) - q_i(X)\gamma^{(i-1)}(X)$$

With

$$Z_0^{(-1)}(X) = X^{2t}$$
 $Z_0^{(0)}(X) = S(X)$
 $\gamma^{(-1)}(X) = \sigma^{(0)}(X) = 1$
 $\gamma^{(0)}(X) = \sigma^{(-1)}(X) = 0$

• To find $\sigma(X)$ and $Z_0(X)$, we carry out the iteration process given by (17) as follows: at the *i*-th step

- 1. We divided $Z_0^{(i-2)}(X)$ by $Z_0^{(i-1)}(X)$ to obtain the quotient $q_i(X)$ and the remainder $Z_0^{(i)}(X)$.
- 2. We find $\sigma^{(i)}(X)$ from

$$\sigma^{(i)}(X) = \sigma^{(i-2)}(X) - q_i(X)\sigma^{(i-1)}(X)$$

3. Iteration stops when we reach a step P for which

$$\deg(Z_0^{(\rho)}(X)) < \deg(\sigma^{(\rho)}(X)) \le t$$

4. Then
$$Z_0(X) = Z_0^{(\rho)}(X)$$
 and $\sigma(X) = \sigma_0^{(\rho)}(X)$

2007/5/24

Execution of the Iteration Process

• The iteration process for finding $\sigma(X)$ and $Z_0(X)$ can be carried out by setting up filling the below table

$\overline{}$	$Z_0^{(i)}(X)$	$q_i(X)$	$\sigma_i(X)$
-1	X^{2t}	-	0
0	S(X)	-	1
1			
•			
ρ			

Example 6: Consider (15, 9, 7) RS code with symbols from GF(2⁴). The generator polynomial of this code is

$$g(X) = (X + \alpha)(X + \alpha^{2})(X + \alpha^{3})(X + \alpha^{4})(X + \alpha^{5})(X + \alpha^{6})$$
$$= \alpha^{6} + \alpha^{9}X + \alpha^{6}X^{2} + \alpha^{4}X^{3} + \alpha^{14}X^{4} + \alpha^{10}X^{5} + X^{6}$$

Let the all zero-vector be the transmitted code vector and let

$$\bar{r} = (0\ 0\ 0\ \alpha^7\ 0\ 0\ 0\ 0\ 0\ \alpha^{11}\ 0\ 0\ 0\ 0)$$

Thus,

$$r(X) = \alpha^7 X^3 + \alpha^{11} X^{10}$$

The syndrome components are computed as follows

$$S_{1} = r(\alpha) = \alpha^{10} + \alpha^{21} = \alpha^{7}$$

$$S_{2} = r(\alpha^{2}) = \alpha^{13} + \alpha^{31} = \alpha^{12}$$

$$S_{3} = r(\alpha^{3}) = \alpha^{16} + \alpha^{41} = \alpha^{6}$$

$$S_{4} = r(\alpha^{4}) = \alpha^{19} + \alpha^{51} = \alpha^{12}$$

$$S_{5} = r(\alpha^{5}) = \alpha^{7} + \alpha = \alpha^{14}$$

$$S_{6} = r(\alpha^{6}) = \alpha^{10} + \alpha^{11} = \alpha^{14}$$

The syndrome polynomial is

$$S(X) = \alpha^7 + \alpha^{12}X + \alpha^6X^2 + \alpha^{12}X^3 + \alpha^{14}X^4 + \alpha^{14}X^5$$

Using the Euclidean algorithm, we find

$$\sigma(X) = \alpha^{11} + \alpha^8 X + \alpha^9 X^2$$
$$= \alpha^{11} (1 + \alpha^{12} X + \alpha^{13} X^2)$$

and

$$Z_0(X) = \alpha^3 + \alpha^2 X$$

To find the error-location polynomial $\sigma(X)$, we fill out the following table

$$i Z_0^{(i)}(X) q_i(X) \sigma^{(i)}(X)$$

$$-1 X^6 - 0$$

$$0 S(X) = \alpha^7 + \alpha^{12}X + \alpha^6X^2 + \alpha^{12}X^3 \\ + \alpha^{14}X^4 + \alpha^{14}X^5 - 1$$

$$1 \alpha^8 + \alpha^3X + \alpha^5X^2 + \\ \alpha^5X^3 + \alpha^6X^4 \alpha + \alpha X \alpha + \alpha X$$

$$2 \alpha^3 + \alpha^2X \alpha^{11} + \alpha^8X \alpha^{11} + \alpha^8X + \alpha^9X^2$$

2007/5/24

大葉大學電信系胡大湘

$$Z_0^{(i)}(X) = Z_0^{(i-2)}(X) - q_i(X)Z_0^{(i-1)}(X)$$

$$\sigma^{(i)}(X) = \sigma^{(i-2)}(X) - q_i(X)\sigma^{(i-1)}(X)$$

• Step 1 (i = 1):

$$Z_0^{(-1)}(X) = q_1(X)Z_0^{(0)}(X) + Z_0^{(1)}(X)$$

$$X^6 = (\alpha + \alpha X)(\alpha^7 + \alpha^{12}X + \alpha^6X^2 + \alpha^{12}X^3 + \alpha^{14}X^4 + \alpha^{14}X^5) + \alpha^8 + \alpha^3X + \alpha^5X^2 + \alpha^5X^3 + \alpha^6X^4$$

$$\sigma^{(1)}(X) = \sigma^{(-1)}(X) - q_1(X)\sigma^{(0)}(X)$$

$$\sigma^{(1)}(X) = 0 - (\alpha + \alpha X) \cdot 1 = \alpha + \alpha X$$

• Step 2:

$$Z_0^{(0)}(X) = q_2(X)Z_0^{(1)}(X) + Z_0^{(2)}(X)$$

$$\alpha^7 + \alpha^{12}X + \alpha^6X^2 + \alpha^{12}X^3 + \alpha^{14}X^4 + \alpha^{14}X^5 =$$

$$(\alpha^{11} + \alpha^8X)(\alpha^8 + \alpha^3X + \alpha^5X^2 + \alpha^5X^3 + \alpha^6X^4)$$

$$+ \alpha^3 + \alpha^2X$$

$$Z_0(X) = \alpha^3 + \alpha^2 X$$

$$\sigma^{(2)}(X) = \sigma^{(0)}(X) - q_2(X)\sigma^{(1)}(X)$$

$$\sigma^{(1)}(X) = 1 - (\alpha + \alpha X) \cdot (\alpha^{11} + \alpha^8 X)$$

$$= 1 + \alpha^{12} + (\alpha^9 + \alpha^{12})X + \alpha^9 X^2$$

$$= \alpha^{11} + \alpha^8 X + \alpha^9 X^2$$

$$= \sigma(X)$$

$$\sigma'(X) = \frac{d\sigma(X)}{dX}$$
$$= \alpha^{8}$$

From $\sigma(X)$, we find that the roots are α^5 and α^{12} . Hence, the error location number are α^{10} and α^3 . The error values at these locations are

$$e_{3} = \frac{-Z_{0}(\alpha^{-3})}{\sigma'(\alpha^{-3})} = \frac{\alpha^{3} + \alpha^{2}\alpha^{-3}}{\alpha^{8}} = \frac{1}{\alpha^{8}} = \alpha^{7}$$

$$e_{10} = \frac{-Z_0(\alpha^{-10})}{\sigma'(\alpha^{-10})} = \frac{\alpha^3 + \alpha^2 \alpha^{-10}}{\alpha^8} = \frac{\alpha^4}{\alpha^8} = \alpha^{11}$$

Therefore, the error polynomial is

$$e(X) = \alpha^7 X^3 + \alpha^{11} X^{10}$$

And the decoded codeword v(X) is given by

$$v(X) = r(X) - e(X) = 0$$

Frequency-Domain Decoding Algorithm

For $t+1 \le l \le n-1-t$

$$E_{l+t} = -(\sigma_1 E_{l+t-1} + \cdots + \sigma_v E_{l+t-v})$$

$$E_0 = -\frac{1}{\sigma_v} (E_v + \dots + \sigma_{v-1} E_1)$$

Once we obtain

$$E(X) \xrightarrow{\text{IDFT}} e(X)$$

Frequency-Domain Decoding Algorithm

• Let $V(X) = V_0 + V_1 X + ... + V_{n-1} X^{n-1}$ over $GF(2^m)$ be the Galois field Fourier transform of $v(X) = v_0 + v_1 X + \dots + v_{n-1} X^{n-1}$. Then

$$V_j = v(\alpha_j) = \sum_{i=0}^{n-1} v_i \alpha^{ij}$$
(18)

$$v_i = V(\alpha^{-i}) = \sum_{j=0}^{n-1} V_j \alpha^{-ij}$$
 (19)

• The product of a(X) and b(X) is defined as follows

$$a(X) = a_0 + a_1 X + \dots + a_{n-1} X^{n-1}$$
$$b(X) = b_0 + b_1 X + \dots + b_{n-1} X^{n-1}$$

$$C(X) \stackrel{\Delta}{=} a(X)b(X)$$

$$= a_0b_0 + a_1b_1X + a_2b_2X^2 + \dots + a_{n-1}b_{n-1}X^{n-1}$$

$$= c_0 + c_1X + c_2X_2 + \dots + c_{n-1}X^{n-1}$$

• Let the Fourier transform of a(X) and b(X) are given by

$$A(X) = A_0 + A_1 X + \dots + A_{n-1} X^{n-1}$$

$$B(X) = B_0 + B_1 X + \dots + B_{n-1} X^{n-1}$$

• The Fourier transform of c(X) is given by

$$C(X) = C_0 + C_1 X + \dots + C_{n-1} X^{n-1}$$

where

$$C_{j} = \sum_{k=0}^{n-1} A_{k} B_{j-k}$$
 (20)

• Let v(X) and e(X) be the transmitted code polynomial and the error polynomial, and the received sequence r(X) is denoted as follows

$$r(X) = v(X) + e(X)$$

• The Fourier transform of r(X) is given by

$$R(X) = V(X) + E(X) \tag{21}$$

where V(X) and E(X) are the Fourier transform of v(X) and r(X), respectively.

• Because v(X) is a code polynomial that has α , α^2 , ... α^{2t} as roots, then

$$V_j = 0$$
, for $0 \le j \le 2t$

• From (21), we find that for $0 \le j \le 2t$

$$R_j = E_j$$

• Let $S = (S_1, S_2, ..., S_{2t})$ be the syndrome of r(X). Then for $0 < j \le 2t$,

$$S_j = r(\alpha^j) = E_j = R_j$$

• Suppose there are $v \le t$ errors, and

$$e(X) = e_{j_1} X^{j_1} + e_{j_2} X^{j_2} + \cdots + e_{j_v} X^{j_v}$$

the error-location numbers are then $\alpha^{j_1}, \alpha^{j_2}, \cdots, \alpha^{j_\nu}$

• The error-location polynomial over $GF(2^m)$ is

$$\sigma(X) = (1 - \alpha^{j_1} X)(1 - \alpha^{j_2} X) \cdots (1 - \alpha^{j_\nu} X)$$
$$= 1 + \sigma_1 X + \cdots \sigma_{\nu} X^{\nu}$$

which has $\alpha^{-j_1}, \alpha^{-j_2}, \dots, \alpha^{-j_\nu}$ as roots. Hence,

$$\sigma(\alpha^{-j_i}) = 0, \quad \text{for } 1 \le i \le v \tag{22}$$

2007/5/24

• We may regard $\sigma(X)$ as the Fourier transform of a polynomial over GF(2)

$$\lambda(X) = \lambda_0 + \lambda_1 X + \dots + \lambda_{n-1} X^{n-1}$$

where

$$\lambda_j = \sigma(\alpha^{-j}), \quad \text{for } 0 \le j \le n-1$$
 (23)

• From (22) and (23), we readily see that

$$\lambda(X)e(X) = 0 \tag{24}$$

2007/5/24

• That is,

$$\lambda_i \cdot e_j = 0$$
, for $0 \le j \le n-1$ (25)

• Taking the Fourier transform of $\lambda(X)e(X)$ and using (20), we have

$$\sum_{k=0}^{n-1} \sigma_k E_{j-k} = 0, \quad \text{for } 0 \le j \le n-1 \quad (26)$$

- Since the degree of $\sigma(X)$ is ν , that is $\sigma_k = 0$ for $k > \nu$.
- Then

$$E_{i} + \sigma_{1} E_{i-1} + \dots + \sigma_{v} E_{i-v} = 0$$
 (27)

• The preceding equation can be put in the following form: for $0 \le j \le n-1$

$$E_{j} = -(\sigma_{1}E_{j-1} + \dots + \sigma_{\nu}E_{j-\nu})$$
 (28)

• Since E_1 , E_2 ,... E_{2t} are already known, it follows from (28) that for $t+1 \le l \le n-1-t$, we obtain the following recursive equation for computing E_0 and E_{2t+1} to E_{n-1} .

$$E_{l+t} = -(\sigma_1 E_{l+t-1} + \dots + \sigma_{\nu} E_{l+t-\nu})$$

$$E_0 = -\frac{1}{\sigma_{\nu}} (E_{\nu} + \dots + \sigma_{\nu-1} E_1)$$
(29)

2007/5/24

- The decoding consists of the following steps:
 - 1) Take the Fourier transform R(X) of r(X).
 - 2) Find $\sigma(X)$ (use the Berlekamp-Massy algorithm)
 - 3) Compute E(X).
 - 4) Take the inverse transform v(X) of V(X) = R(X) E(X).

Example 7: Consider (15, 9, 7) RS code with symbols from GF(2⁴). $r(X) = \alpha^7 X^3 + \alpha^3 X^6 + \alpha^4 X^{12}$ is received. The Fourier transform of r(X) is

$$R(X) = \alpha^{12}X + X^{2} + \alpha^{14}X^{3} + \alpha^{10}X^{4} + \alpha^{12}X^{6}$$

$$+ X^{7} + \alpha^{14}X^{8} + \alpha^{10}X^{9} + \alpha^{12}X^{11} + X^{12}$$

$$+ \alpha^{14}X^{13} + \alpha^{10}X^{14}$$

The syndrome components: $S_1 = \alpha^{12}$, $S_2 = 1$, $S_3 = \alpha^{14}$, $S_4 = \alpha^{10}$, $S_5 = 0$, $S_6 = \alpha^{12}$. They are also the spectral components E_1 to E_6 .

2007/5/24 大葉大學電信系胡大湘

Using the Berlekamp-Massy algorithm based on the syndrome $(S_1, S_2, ..., S_6)$, we find the error-location polynomial

$$\sigma(X) = 1 + \alpha^7 X + \alpha^4 X^2 + \alpha^6 X^3$$

From (29), for $4 \le l \le 11$, we obtain the following recursion equation for computing E_7 to E_{14} and E_0 :

$$E_{l+3} = \sigma_1 E_{l+2} + \sigma_2 E_{l+1} + \sigma_3 E_l$$
$$= \alpha^7 E_{l+2} + \alpha^4 E_{l+1} + \alpha^6 E_l$$

$$E_{0} = \frac{1}{\sigma_{3}} (E_{3} + \sigma_{1}E_{2} + \sigma_{2}E_{1})$$

$$= \alpha^{-6} (E_{3} + \alpha^{7}E_{2} + \alpha^{4}E_{1})$$

$$= 0$$

The resultant error spectral polynomial is

$$E(X) = \alpha^{12}X + X^{2} + \alpha^{14}X^{3} + \alpha^{10}X^{4} + \alpha^{12}X^{6}$$

$$+ X^{7} + \alpha^{14}X^{8} + \alpha^{10}X^{9} + \alpha^{12}X^{11} + X^{12}$$

$$+ \alpha^{14}X^{13} + \alpha^{10}X^{14}$$

We find that R(X) = E(X), and V(X) = 0. Therefore, the decoded codeword is that all-zero codeword. The inverse transform of E(X) is $e(X) = \alpha^7 X^3 + \alpha^3 X^6 + \alpha^4 X^{12}$.

The Step-By-Step Decoding

• Trial and Error:

$$r = (r_0, r_1, r_2, \cdots, r_{n-1})$$

$$\uparrow test it error$$

$$+ \beta$$

$$\beta \in \{1, \alpha, \alpha^2, \dots, \alpha^{n-1}\}$$

$$|M_{v}^{(0)}| = \det \begin{bmatrix} S_{1} & S_{2} & \cdots & S_{v} \\ S_{2} & S_{3} & \cdots & S_{v+1} \\ \vdots & & & \\ S_{v} & S_{v+1} & \cdots & S_{2v-1} \end{bmatrix} \neq 0$$

$$|M'_{v}| = \det \begin{bmatrix} S'_{1} & S'_{2} & \cdots & S'_{v} \\ S'_{2} & S'_{3} & \cdots & S'_{v} \\ \vdots & & & \\ S'_{v} & S'_{v+1} & \cdots & S'_{2v-1} \end{bmatrix} = 0 ?$$

2007/5/24

The Step-By-Step Decoding

- In this decoding, we do not find the error-location polynomial. Instead, we use the concept of the error-trapping decoding.
- From (6), we define the syndrome matrix as following:

$$M_{v}^{(0)} = \begin{bmatrix} S_{1} & S_{2} & \cdots & S_{v} \\ S_{2} & S_{3} & \cdots & S_{v+1} \\ \vdots & & & \vdots \\ S_{v} & S_{v+1} & \cdots & S_{2v-1} \end{bmatrix}$$
(30)

and
$$\overline{S} = (S_1, S_2, \dots, S_{2t})$$

- Theorem 4: For any binary BCH (n, k, t) code, and any v such that $1 \le v \le t$, the v by v syndrome matrix is singular if the number of errors is at most v-1, and is nonsingular if the number of errors is at least v.
- The decision vector is defined

$$m=(m_1,m_2,\cdots,m_t)$$

where decision bit m_v is calculated as

$$m_v = 0$$
 if $det(M_v) = 0$
 $m_v = 1$ if $det(M_v) \neq 0$

- The decision vector of a general *t*-error-correcting RS code can be determined as follows:
 - (1)if there are no errors, then

$$m = (0,0,\cdots,0) = (0^t)$$

(2) if there is one error, then

$$\overline{m} = (1,0,\cdots,0) = (1,0^{t-1})$$

(3)if there are v errors, then

$$\overline{m} \in \{(X^{\nu-2}, 1, 1, 0^{t-\nu})\}$$

where the symbol X can be 0 or 1.

(4)if there are no less than t errors, then

$$\overline{m} \in \{(X^{v-2},1,1)\}$$

- For example, 2-error-correcting RS codes, the decision vector could be (0, 0) for no errors, (1, 0) for single error, and (1, 1) for two errors.
- Let v be codeword of a RS code, and $\overline{v}^{(p)}$ is also a codeword, which denotes the cyclically shifting p places to the right of \overline{v} . That is

$$\overline{v} = (v_0, v_1, \dots, v_{n-1})$$

$$\overline{v}^{(p)} = (v_{n-p}, v_{n-p+1}, \dots, v_{n-1}, v_0, \dots, v_{n-p-1})$$

- For p > 0, $r^{-(p)}$ is obtained by cyclically shifting p places to the right of r.
- p places to the right of r.

 The syndrome matrix for $r^{-(p)} + \beta$ is defined as follows:

$$M_{v}^{(p)} = \begin{bmatrix} S_{1}^{(p)} + \beta & S_{2}^{(p)} + \beta & \cdots & S_{v}^{(p)} + \beta \\ S_{2}^{(p)} + \beta & S_{3}^{(p)} + \beta & \cdots & S_{v+1}^{(p)} + \beta \\ & \vdots & & & \\ S_{v}^{(p)} + \beta & S_{v+1}^{(p)} + \beta & \cdots & S_{2v-1}^{(p)} + \beta \end{bmatrix}$$
(31)

- The step-by-step decoding is iterative, which contains the follow steps
 - (1) calculate syndrome vector, and find v such that $\det(M_v^{(0)}) = 1$, and set j = 0.
 - (2) cyclically shift *r* one symbol one time, and find its corresponding syndrome vector.
 - (3) let $\beta = \alpha^j$, and check whether $\det(M_v^{(p)}) = 0$.
 - (4) If $\det(M_v^{(p)}) = 0$, then $r^{(p)}(X) = r^{(p)}(X) + \beta$.
 - (5) Otherwise, j = j+1, do Step (2) again.

Example 8: Consider 2-error-correcting (7,3) RS code over GF(2³) The generator polynomial is

$$g(X) = (X + \alpha)(X + \alpha^{2})(X + \alpha^{3})(X + \alpha^{4})$$
$$= \alpha^{3} + \alpha X + X^{2} + \alpha^{3}X^{3} + X^{4}$$

Suppose the all-zero vector is transmitted. And the received sequence is

$$\overline{r} = (00000\alpha\alpha^5)$$

$$r(X) = \alpha X^5 + \alpha^5 X^6$$

$$S_1^{(0)} = r(\alpha) = \alpha \alpha^5 + \alpha^5 \alpha^6 = \alpha^3$$

$$S_2^{(0)} = r(\alpha^2) = \alpha(\alpha^2)^5 + \alpha^5(\alpha^2)^6 = \alpha^6$$

$$S_3^{(0)} = r(\alpha^3) = \alpha(\alpha^3)^5 + \alpha^5(\alpha^3)^6 = 0$$

$$S_4^{(0)} = r(\alpha^4) = \alpha(\alpha^4)^5 + \alpha^5(\alpha^4)^6 = \alpha^3$$

$$\det(M_2^{(0)}) = \det(\begin{bmatrix} S_1^{(0)} & S_2^{(0)} \\ S_2^{(0)} & S_3^{(0)} \end{bmatrix}) = \det(\begin{bmatrix} \alpha^3 & \alpha^6 \\ \alpha^6 & 0 \end{bmatrix})$$

$$= \alpha^5$$

which implies there are at least two errors in the received sequence

Cyclically shift r(X) one time, $r^{(1)}(X) = \alpha^5 + \alpha X^6$ is obtain. And the corresponding syndrome is given by

$$S_{1}^{(1)} = r^{(1)}(\alpha) = \alpha^{5} + \alpha\alpha^{6} = \alpha^{5} + 1 = \alpha^{4}$$

$$S_{2}^{(1)} = r^{(1)}(\alpha^{2}) = \alpha$$

$$S_{3}^{(1)} = r^{(1)}(\alpha^{3}) = 0$$

$$\det(M_{2}^{(1)}) = \det\left[\begin{array}{cc} S_{1}^{(1)} + \beta & S_{2}^{(1)} + \beta \\ S_{2}^{(1)} + \beta & S_{3}^{(1)} + \beta \end{array}\right]$$

$$= \det\left[\begin{array}{cc} \alpha^{4} + \beta & \alpha + \beta \\ \alpha + \beta & \beta \end{array}\right]$$

$$= \alpha^{2}\beta + 1$$

As $\beta = \alpha^5$, then $\det(M_2^{(1)}) = 0$. The modified cyclical received polynomial is

$$r^{(1)}(X) = r^{(1)}(X) + \beta = \alpha X^{6}$$

After the 2nd time cyclical shift, $r^{(2)}(X) = \alpha$ is obtained. The syndrome is given by

$$S_1^{(2)} = r^{(2)}(\alpha) = \alpha$$

$$= S_2^{(2)}$$

$$= S_3^{(2)}$$

$$\det(M_2^{(2)}) = \det\left[\begin{bmatrix} S_1^{(2)} + \beta & S_2^{(2)} + \beta \\ S_2^{(2)} + \beta & S_3^{(2)} + \beta \end{bmatrix} \right]$$

$$= \det\left[\begin{bmatrix} \alpha + \beta & \alpha + \beta \\ \alpha + \beta & \alpha + \beta \end{bmatrix} \right]$$

$$= 0 \qquad \text{(at most 1 error)}$$

$$\det(M_1^{(2)}) = S_1^{(2)} + \beta = \alpha + \beta$$
 (at least 1 error)

From two preceding equation, there is still one error in the received sequence.

As $\beta = \alpha$, then $\det(M_1^{(2)}) = 0$. The modified cyclical polynomial is given by

$$r^{(2)}(X) = r^{(2)}(X) + \beta = 0$$

Therefore, the corrected received polynomial is

$$r(X) = 0.$$

- In fact, the step-by-step decoding can be easily modified as a parallel decoding.
- Without cyclical shift, the received symbols r_{n-1} , r_{n-2} , ..., r_{n-k} are checked in parallel. That is, only one received symbols is changed in a corresponding decoding procedure by checking if $\det(M_v) = 0$.
- For RS codes with a few error-correcting capability, this parallel decoding is feasible.

6. Modified RS Codes

Punctured Reed-Solomon codes:

In Theorem 3, it was shown that any combination of k symbols in an (n, k) RS code can be treated as message positions in a systematic representation.

An (n, k) RS code is thus punctured by deleting any one of its parity check symbols. The resulting (n-1, k) code is, in general, no longer cyclic, but it is MDS.

Shortened RS codes:

A code is shortened by deleting a message symbol from the encoding process. This resulting (n-1, k-1) code is a shortened RS code, which is not cyclic, but it is MDS.

Example 9: These two (32, 28, 5) and (28, 24, 5) RS codes are employed in the audio CD system. Since each symbol is 8 bits, therefore these two RS codes are shorten from the (255, 251, 5) by deleting 223 and 227 information symbols.

• Extended RS codes: Any code can be extended multiple times through the addition of parity check symbols.

(1) Singly-extended RS code codes:

An (n, k) RS code can be extended to form a noncyclic (n+1, k) MDS code by adding a parity check. Each codeword $(c_0, c_1, \dots, c_{n-1})$ thus becomes $(c'_0, c'_1, \dots, c'_n)$, where

$$c'_{j} = c_{j}$$
, for $0 \le j \le n-1$
 $c'_{n} = -\sum_{j=0}^{n-1} c_{j}$

The corresponding parity check matrix is

$$H = \begin{bmatrix} 1 & 1 & 1 & 1 & \cdots & 1 & 1 \\ 1 & \alpha & \alpha^2 & \alpha^3 & \cdots & \alpha^{n-1} & 0 \\ 1 & \alpha^2 & \alpha^{2\times 2} & \alpha^{2\times 3} & \cdots & \alpha^{2(n-1)} & 0 \\ 1 & \alpha^3 & \alpha^{3\times 2} & \alpha^{3\times 3} & \cdots & \alpha^{3(n-1)} & 0 \\ \vdots & & & & \ddots & \vdots & 0 \\ 1 & \alpha^{2t} & \alpha^{2t\times 2} & \alpha^{2t\times 3} & \cdots & \alpha^{2t(n-1)} & 0 \end{bmatrix}$$

(2) Doubly-extended RS code codes:

An (n, k) RS code can be extended to form a no cyclic (n+2, k) MDS code by adding two parity checks. Each codeword $(c_0, c_1, \dots, c_{n-1})$ thus becomes $(c'_0, c'_1, \dots, c'_{n+1})$, where

$$c'_j = c_j$$
, for $0 \le j \le n-1$

$$c'_{n} = -\sum_{j=0}^{n-1} c_{j}$$

$$c'_{n+1} = -\sum_{j=0}^{n-1} c_j \alpha^{j(2t+1)}$$

The corresponding parity check matrix is

	1	1	1	1	• • •	1	1	0
	1	α	α^2	α^3	• • •	α^{n-1}	0	0
	1	α^2	$lpha^{2\! imes2}$	$\alpha^{2\times 3}$	• • •	$\alpha^{2(n-1)}$	0	0
H =	1	α^3	$\alpha^{3\times2}$	$\alpha^{3\times3}$	• • •	$\alpha^{3(n-1)}$	0	0
	•				• • •	•	0	0
	1	$lpha^{2t}$	$lpha^{2t imes2}$	$\alpha^{2t \times 3}$	•••	$\alpha^{2t(n-1)}$	0	0
	1	$lpha^{2t+1}$	$\alpha^{(2t+1)\times 2}$	$\alpha^{(2t+1)\times 3}$	• • •	$\alpha^{(2t+1)(n-1)}$	0	1

7. Error Correcting Performance

- There are 3 figures shown in the following for comparison of error correcting performance of Reed-Solomon codes.
- In generally, the error performance of a shorten RS code is better than that of a corresponding RS code, which results from that at the same signal-to-noise ratio and error correcting capability, the number of errors in a shorter code is less than in a longer code.

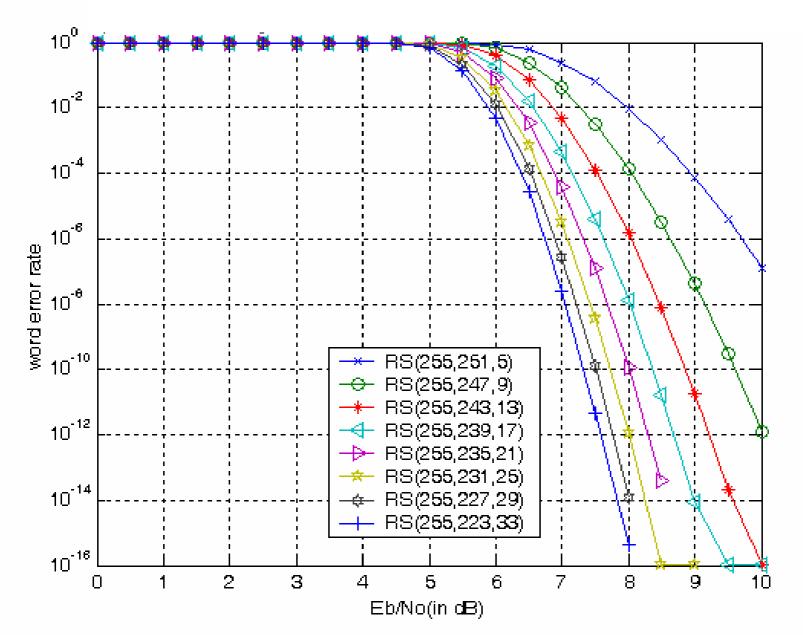


Figure 3: Comparison of error correcting for RS codes

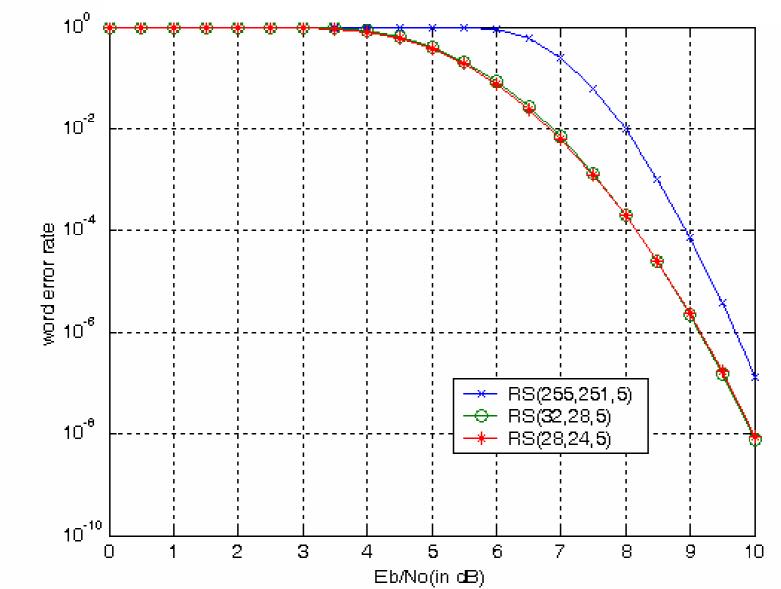


Figure 4: Comparison of error correcting for RS codes

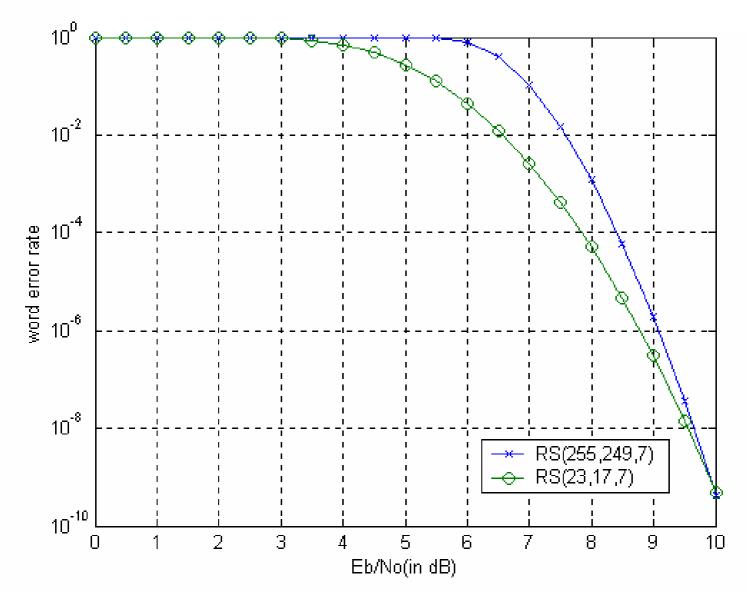


Figure 5: Comparison of error correcting for RS codes

8. Reference

- [1]Shu Lin, and Daniel J Costello, Jr., Error Control Coding, Prentice hall, 2nd edition, 2004.
- [2]Stephen B. Wicker, Error Control Systems for Digital Communication and Storage, Prentice hall, 1995.
- [3]Peterson, W. W. and Weldon, E. J., Error-Control Codes, MIT press, Cambridge, 2nd edition, 1972.
- [4]Massy, J. L, "Step-by-Step Decoding of Bose-Chauhuri-Hocquenghem codes," IEEE Trans. Inf. Theory, IT-11, No. 4, pp.580-585, Nov., 1965.
- [5]S.-W. Wei. and C-H. Wei, "High-Speed Decoder of Reed-Solomon Codes," IEEE Trans. Comm, Vol. 41, No.11, Nov. 1993.

- [6]T.-C. Chen; C.-H. Wei and S.-W. Wei, "Step-by-step decoding algorithm for Reed-Solomon codes," IEE Proc.-Commun., Vol. 147, No.1, Feb. 2000.
- [7] Masakatu Morii, and Masao Kasahara, "Generalized keyequation of remainder decoding algorithm for Reed-Solomon codes," IEEE Trans. Inf. Theory, Vol. 38, No.6, pp. 1801-1807, Nov. 1992, .
- [8]S. V. Fedorenko, "A simple algorithm for decoding Reed-Solomon codes and its relation to the Welch-Berlekamp algorithm," IEEE Trans. Inf. Theory, Vol. 51, No.3, pp. 1196-1198, March. 2005.
- [9]R. Koetter, and A. Vardy, "Algebraic Soft-Decision Decoding of Reed–Solomon Codes," IEEE Trans. Inf. Theory, Vol. 49, No.11, pp.2809-2825, Nov. 2003.