Outline of Queueing Theory:
Week 1: Introduction to Queueing Theory
· Lecture: Introduce the basic concepts of queueing systems, their components (arrival process, service mechanism, queue discipline), and key performance metrics.
· Python Exercise: Develop a plotting the probability density function for the exponential distribution and arrival process over time using Python.
· [bookmark: _GoBack]Assignment: Read the designated chapters and summarize the core concepts of queueing theory. 

Week 2: Stochastic Processes and the Poisson Process
· Lecture: Cover the fundamentals of stochastic processes with a focus on the Poisson process and its applications in modeling customer arrivals.
· Python Exercise: Write a program to generate a Poisson arrival sequence and integrate it into a queueing simulation.
· Assignment: Analyze the characteristics of the Poisson process under different arrival rates and prepare a short report comparing simulation results with theoretical predictions.

Week 3: Renewal Processes and Regenerative Theory
· Lecture: Discuss renewal processes and the concept of regenerative points, and explain their role in analyzing queueing systems.
· Python Exercise: Simulate a queueing model (e.g., an M/G/1 queue) that incorporates a regenerative structure to observe the impact of regenerative points on performance.
· Assignment: Compute regenerative-related statistics from your simulation and compare these with theoretical values.

Week 4: Mathematical Analysis of Basic Queueing Models
· Lecture: Dive into the mathematical analysis of basic models such as M/M/1 and M/M/c, covering balance equations, transition probabilities, and performance measures.
· Python Exercise: Implement simulations for these models and calculate key metrics such as average waiting time and system length.
· Assignment: Compare the performance differences between single-server and multi-server queues under varying loads and write an analytical report.

Week 5: Queueing Systems with General Service Time Distributions
· Lecture: Examine systems where service times follow a general (non-exponential) distribution, focusing on models like G/M/1 and G/G/1.
· Python Exercise: Simulate a queueing system with non-exponential service times and analyze how different service distributions affect performance.
· Assignment: Design experiments by varying the service time distribution and investigate its impact on waiting times and system stability, then document your findings.

Week 6: Priority Queueing Systems
· Lecture: Introduce priority queueing strategies, discussing both non-preemptive and preemptive priority schemes and their mathematical formulations.
· Python Exercise: Develop a simulation of a multi-priority queueing system to observe how different priority rules affect performance metrics.
· Assignment: Create and simulate a two-tier (or multi-tier) priority queueing system, and write a report discussing the advantages and drawbacks of various priority strategies.

Week 7: Queueing Networks
· Lecture: Explore the concepts behind multi-node queueing systems (e.g., Jackson networks) and methods for analyzing them.
· Python Exercise: Build a simple queueing network simulation using Python to model customer flow between multiple service nodes.
· Assignment: Design a network of several service nodes, analyze how interactions between nodes affect overall system performance, and submit your analysis.

Week 8: Stability Analysis of Queueing Systems
· Lecture: Discuss the conditions for system stability, the concept of critical load, and describe the behavior of systems under different loading conditions.
· Python Exercise: Simulate queueing systems under varying loads to examine the transition from stability to instability.
· Assignment: Modify system parameters to document the transition from stable to unstable behavior and write a detailed experimental report.

Week 9: Numerical Methods for Queueing Systems
· Lecture: Introduce numerical methods (e.g., Markov chains and solving systems of linear equations) for computing performance metrics in queueing systems.
· Python Exercise: Use numerical techniques to determine the steady-state distribution of a queueing model and compare it with simulation results.
· Assignment: Select one model, apply both numerical and simulation methods, and write a comparative analysis of the results.

Week 10: Approximate Solutions for Queueing Systems
· Lecture: Discuss common approximation methods (such as heavy traffic approximations and fluid limits) used for complex or large-scale queueing systems.
· Python Exercise: Implement an approximation algorithm in Python and compare its performance with exact solutions under various scenarios.
· Assignment: Evaluate the accuracy of the approximation method by comparing it to the precise solution, discussing its range of applicability and potential sources of error.

Week 11: Simulation Techniques and Tools for Queueing Systems
· Lecture: Cover the advantages and limitations of discrete-event simulation in queueing analysis and introduce popular simulation libraries (e.g., SimPy, queueing-tool).
· Python Exercise: Construct a simulation framework for a queueing system using one of these libraries, and validate the simulation results.
· Assignment: Design a simulation experiment to study a particular queueing model and write a report detailing your methodology, results, and conclusions.

Week 12: Advanced Simulation Applications in Python
· Lecture: Delve deeper into discrete-event simulation (DES) principles and demonstrate their application in complex queueing systems, including event scheduling and state updates.
· Python Exercise: Develop a comprehensive simulation environment using SimPy (or a similar library) to model multiple interacting events within a queueing system.
· Assignment: Create a detailed simulation experiment based on a specified queueing model, complete with performance analysis and a written report.

Week 13: Heavy Traffic Approximations and Limit Theorems
· Lecture: Introduce heavy traffic approximations, fluid limits, and diffusion approximations to predict system behavior under high-load conditions.
· Python Exercise: Simulate a queueing system operating under heavy load and compare the simulation results with predictions from heavy traffic theory.
· Assignment: Design experiments that vary system load and assess the accuracy of the heavy traffic approximations, then prepare an analysis report.

Week 14: Sensitivity Analysis and Queueing System Optimization
· Lecture: Discuss techniques for sensitivity analysis of system parameters and introduce optimization strategies (e.g., adjusting the number of service channels or reallocating resources) to improve performance.
· Python Exercise: Develop a simulation script that systematically varies key parameters to perform sensitivity analysis and identify optimal configurations.
· Assignment: Choose a queueing model, determine the optimal set of parameters through numerical experimentation, and submit an optimization report detailing your findings.

Week 15: Case Studies and Practical Applications
· Lecture: Present real-world queueing system case studies (e.g., call centers, emergency rooms, telecommunication networks) and discuss design considerations and model limitations.
· Python Exercise: Select a real-world case and simulate it using theoretical models to evaluate performance and potential improvements.
· Assignment: Conduct an in-depth analysis of a chosen real-world queueing system, including simulation results and proposed enhancements, and compile a case study report.

Week 16: Capstone Project and Final Presentations
· Lecture: Review the key topics covered throughout the course, including various queueing models, simulation techniques, numerical and approximate methods, and optimization strategies. Engage in a Q&A and discussion session.
· Python Exercise: Students select a queueing model or real-world case to develop a comprehensive simulation project, integrating all techniques learned during the course.
· Assignment: Complete a final project report and presentation that synthesizes course material to solve a practical problem, demonstrating both theoretical understanding and programming proficiency.

References
· Leonard Kleinrock, Queueing Systems, Volume 1: Theory, Wiley, 1975.
· SimPy Documentation – for simulation techniques in Python.
This course design aims to balance theory and practice, reinforcing each week’s lecture with a Python programming exercise and an assignment to solidify the concepts learned.
Refer to NYCU OpenCourseWare (陽明交大開放課程): 
· Chapter 17 Queueing Theory (1/5): https://ocw.nycu.edu.tw/?post_type=course_page&p=91439 
· Chapter 17 Queueing Theory (2/5): https://ocw.nycu.edu.tw/?post_type=course_page&p=91445 
· Chapter 17 Queueing Theory (3/5): https://ocw.nycu.edu.tw/?post_type=course_page&p=91451 
· Chapter 17 Queueing Theory (4/5): https://ocw.nycu.edu.tw/?post_type=course_page&p=91461 
· Chapter 17 Queueing Theory (5/5): https://ocw.nycu.edu.tw/?post_type=course_page&p=91467 
· Queueing Theory - Chapter 1 Introduction https://hackmd.io/@kaeteyaruyo/B14oAPqJ9 
